FORECASTING OF HIGH VOLTAGE INSULATION PERFORMANCE: TESTING OF RECOMMENDED POTTING MATERIALS AND OF CAPACITORS

(NASA-TH-85536) FORECASTING OF HIGH VOLTAGE INSULATION PERPORMANCE: TESTING OF RECOMMENDED POTTING MATERIALS AND OF CAPACITORS (NASA) 186 p HC AC9/MF A01

N84-32681

01 Unclas CSCL 09A GJ/33 22258

Renate S. Bever

August 1984

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

FORECASTING OF HIGH VOLTAGE INSULATION PERFORMANCE: TESTING OF RECOMMENDED POTTING MATERIALS AND OF CAPACITORS

INTERIM REPORT

RTOP-506-55-76

Task #5

by

Renate S. Bever

August 1984

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

FORECASTING OF HIGH VOLTAGE INSULATION PERFORMANCE: D.C. PARTIAL DISCHARGE TESTING OF RECOMMENDED POTTING MATERIALS AND OF CAPACITORS

TABLE OF CONTENTS

	Page
INTRODUCTION	1
SOME BASIC THEORY ON PARTIAL DISCHARGE MEASUREMENTS	2
A.C. versus D.C. testing	5
EXPERIMENTAL METHOD	8
RESULTS	13
I. Influence of Ramp Test Variables	13
II. Faint Object Camera (FOC) Study	15
III. Potting Materials Study	20
a) Results of partial discharge testing of the Materials Sample	24
b) Life Testing of Materials Samples	69
c) Thermomechanical and Adhestion Considerations	71
IV. Capacitor D.C. Partial Discharge Data, and Life Tests	81
a) Summary of earlier work	81
b) 5-disc back-to-back ceramic capacitor module	84
c) Multilayer ceramic (BaTiO ₃) capacitor 'manufacturer K) investigation	85
d) Some post-burn-in P.D. results on 2 batches of single disc ceramic capacitors	99
e) Single disc, 16.5 KV, 5000pf of Z5U, BaTiO3, study	141
f) A Recent Pulse-Type Life Test on thick ceramic disc capacitors, SrTiO3.	156
CONCLUSION	161
REFERENCES	163
APPENDIX I	165
APPENDIX II	170

FIGURES AND TABLES

		Page
Figure 1.	Paschen's Original Curves. Breakdown Voltage in Air as a Function of	1 age
	Pressure. (Iron Electrodes)	3
Figure 2.	Paschen's Curve, V. Field Strength Curve, E. (Iron Electrodes)	4
Figure 3a.	Equivalent Circuit of Void in Dielectric for A.C. Partial Discharge	
	Testing	6
Figure 3b.	Lumped Parameter Circuit Model for the D.C. Partial Discharge Case .	6
Figure 4.	A.C. Partial Discharge Testing	7
Figure 5.	Test Set-up for Measuring D.C. Partial Discharges	9
Figure 6a.	D.C. High Voltage Test Cabinet	10
Figure 6b.	D.C. and A.C. Control Circuitry and Multichannel Analyzer	11
Figure 7.	Typical Ramp Test Time Profile	14
Figure 8.	Early FOC Vidicon Tube Packaging Design	17
Figure 9.	P.D. Histograms of Qualification Unit #1	18
Figure 10.	P.D. Histograms of CPC-41 and Uralane 5753 Potting	19
Figure 11.	P.D. Histogram of front-end NESA plate witness sample	20
Figure 12.	Above: Preferred Peak Distribution	86
Figure 13.	Partial Discharges as a Function of Voltage	96
Figure 14.	Partial Discharges as a Function of Voltage	97
Figure 15.	Charge Distribution for a square parallel-plate dielectric-loaded capacitor	
	(After Adams and Mautz) [24]	155
Table 1.	Comparison of D.C. ramp and A.C. partial discharge CIV	16
Table 2.	Material Properties; Appendix II	170
Table 3.	Target Properties for High Voltage Potting Materials	21
Table 4.	Potting Compounds Considered in this Study	22

			Page
Table	5a-d.	1982 Data. Feldex R-6	25-27
Table	6a-p.	1982 and 1983 Data: Uralane 5755LV	28-44
Table	7а - о.	1982, 1983 Data: Conap EN-11	45-59
Table	8a-f.	1983 Data: Empty System DC 93-500	60-65
Table	9.	Perfect vs. Imperfect Uralane	67
Table	10.	Perfect vs. Imperfect EN-11	68
Table	11,12.	Preliminary Report on Life-testing of Material Samples	70
Table	13.	Trand Study	72
Table	14.	Adhesion Test Results	74-80
Table	15.	D.C. P.D. Histograms of various Types of D.C. High Voltages	
		Commercial Capacitors	82
Table	16a-d.	Manufacturer H: 5 Capacitor Module	87-90
ſable	17a-e.	Manufacturer U: 5 Capacitor Module	91-95
Table	18a-v.	1982 Data: Multilayer Ceramic Capacitors by Manufacturer K	100-121
Table	19a-e.	Post Burn-in P.D. Measurement; 1000pf X5R 10KV	122-129
Table	20a-f.	1984 Data: Post Burn-in P.D. Measurement; 1000pf X5R 20KV	130-140
Table	21.	1984 Data: Raw P.D. data, 1st batch, Z5U, 5000pf, 16.5KV rated .	142-147
Table	22.	1984 Data. Corrected P.D. data, 2nd batch, Z5U, 5000pf, 16.5KV,	
		BaTiO ₃	148-153
Table	23.	Strontium Titanate Single Disc Capacitor #10, 2000pf, 33KV	157
Table	24.	Strontium Titanate Single Disc Capacitor #2, 2000pf, 40KV	158
Table	25a.	Before Life Test on Ramps	159
Table	25h	After Life Test on Ramps	160

Acknowledgements.

The help, advice and actual Materials work of Dr. J.J. Park, Mr. C. Clatter-buck and Dr. B. Seidenberg, all of Goddard Space Flight Center(GSFC), is much appreciated. Much thanks is also due Mr. J.L. Westrom, formerly of GSFC, and Mr. A. Ruitberg, of GSFC, for inspiration and helpful discussions.

D.C. PARTIAL DISCHARGE TESTING OF RECOMMENDED POTTING MATERIALS AND OF CAPACITORS

INTRODUCTION

The objective of the RTOP 506-55-76. Task #5, is to make progress toward avoiding total or catastrophic breakdown of insulation systems under applied high voltage in Space. To this end, non-destructive high voltage test techniques are being researched, mostly electrical methods. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. This is because many of the electronic parts and high voltage instruments in Space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Also, the literature contains relatively little published work [1, 2, 3, 4, 5] on D.C. partial discharge data and its interpretation for practical insulation systems.

Thus we

- (1) Investigated the "ramp test" method for D.C. partial discharge measurements;
- (2) Tested some actual flight-type insulation specimen;
- (3) Used "perfect" potting resin samples and also with controlled defects for test;
- (4) Used several types of potting resins and recommend the better ones from the electrical characteristics. Thermal and elastic properties must also be considered, and are mostly from the literature:
- (5) Tested many types of commercial capacitors:
- (5) Arrived at approximate acceptance/rejection/rerating criteria for simple test elements for Space use, based on D.C. partial discharge.

SOME BASIC THEORY ON PARTIAL DISCHARGE MEASUREMENTS

Partial Discharges (P.D.) are best defined as [6] "a type of localized discharge resulting from transient gaseous ionization in an insulation system when the voltage stress exceeds a critical value. The ionization is localized over only a portion of the distance between the electrodes of the system." The discharges may be in a void filled with gas or liquid inside a potting compound, they may be in inclusions, or they may be along a surface, or about sharp points and edges into the surrounding medium, most commonly air at atmospheric pressure. In fact, the ozone smelled around high voltage equipment is produced by exactly this type of partial discharge into the surrounding air. A more commonly known name for Partial Discharge is Corona. It is called "partial" because it does not extend all the way from electrode to electrode. The pulses are of very short duration, of the order of tens of nanoseconds to microseconds. They are not detectable on a D.C. microammeter or electrometer, and when this type of instrument begins to show a tiny, wavering, average D.C. current, one can be sure that the test sample is already in catastrophic breakdown or suffering very intense, rapidly repeating partial discharge pulses. The detection of individual partial discharge pulses requires sensitive instrumentation to be discussed later.

It is impossible here to go into the detailed discussion as in the excellent book by F. Kreuger [7], but some important points might be brought out here: If the void is filled with gas, then Paschen's curve regulates the inception voltage and extinction voltage, as a function of pressure inside the void and the electric field in the void and the geometric descriptors of the void. (The word "void" is used here for any gas-filled cavity whether bubble or thin, large-area delamination.) Ionization of individual atoms can occur by collision with an energetic particle carrying the required ionization energy (for instance, 13 electron volts for a hydrogen atom). But to set off a momentary avalanche discharge requires, even at the Paschen minimum pressure, at least two hundred volts across the void. Figures 1, 2 are examples of

Figure 1. Paschen's Original Curves. Breakdown Voltage in Air as a Function of Pressure. (Iron Electrodes)

(株式の大学の大学をはなった。からは、おっておいまではなったが、ないないないのである。まっている。これできます。ままいる。

E' kv/mm, BREAKDOWN FIELD

Figure 2. Paschen's Curve, V. Field Strength Curve, E. (Iron Electrodes)

Paschen's curves, with parallel electrodes in air. There exist convenient theoretical adaptations of these for voids in dielectric materials. [8, 5]

A.C. versus D.C. testing

The equivalent circuit of a void in a dielectric under A.C. applied voltage is given in Figure 3a. The recurrence of internal discharges as a function of applied A.C. voltage is shown in Figure 4, [9]. As applied voltage v_a across the entire sample rises, so does the voltage across the cavity, v_c . When this reaches the breakdown voltage U^{\star} a flow of free charge occurs in the cavity, causing a drop in v_c across the cavity down to V^{\dagger} : All this occurs in about 10^{-7} seconds. If total applied voltage to the specimen, v_a , is still on the rise, then the v_c will increase again also, until it reaches U⁺ again, and there will be another discharge. The field across the cavity is determined by the superposition of the main applied electric field causing fixed polarization charges in the dielectric lining the cavity walls and the field of the free surface charges at the inside of the cavity walls, left behind just after the last discharge. Just after the last discharge these fields counteract one another: the polarization charges and free charges adjacent to one another on the same wall almost neutralize one another until the increasing applied voltage or the change in polarity of the A.C. voltage makes the charges on the cavity wall increase in quantity again and predominate again until their field causes another breakdown of the cavity or a second pulse. In the D.C. case, however, one has to wait until more charges in the dielectric medium lining the cavity are placed there by conduction through the dielectric. Since the conductivity of a good dielectric is very low, this takes a long time. Hence, at applied electric fields at which a sample begins to show regularly spaced pulses at A.C. applied voltages, discharge pulses at D.C. voltages are few and far between, and might in fact be missed altogether (if data acquisition time is not long enough). Observation of P.D.'s on D.C. voltage must be made with a storage oscilloscope and counters as described below. Thus partial discharge detection under P.C. conditions is more difficult and time consuming.

Figure 3a. Left: Dielectric with Void.

Right: Equivalent Circuit of Void in Dielectric for AC Partial

Discharge Testing.

Figure 3b. Lumped Parameter Circuit Model of a Cavity for the DC Partial Discharge Case.

機関・直接機関は、一定を通ったを開発を受ける場合のは、自然はないのでは、これのではなっていて、これを見る時代によっている。

Figure 4. AC Partial Discharge Testing. Applied waveform v_a , voltage across the cavity v_c and current in the leads i, as a function of time t.

but it is much less damaging. Very little heating of the test specimen occurs under D.C. conditions as compared to the heat generated with A.C. voltages. Also, samples should be tested under the same conditions as in service, which for Space use is often D.C. Moreover, the very fact α only a few pulses during D.C. is a safety factor, as compared to thousands of pulses per minute, already at the discharge inception voltage under A.C. conditions, each pulse doing a little damage.

Brief mathematical models for a cavity in a dielectric medium for D.C. and for A.C. applied voltage is given in Appendix I.

EXPERIMENTAL METHOD

A block diagram of the essentials of a P.D. measurement facility is shown in Figure 5, and photographs of some of our facility are shown in Figures 6a and 6b.

Several questions arise and need to be dealt with as to the circuit arrangements for detecting the tiny P.D. pulses: general outlines of basic circuitry are given in ASTM D 1868-81 and IEEE Std 454-1973 [6, 10]. More specifically:

- (1) What is the detection impedance Z that translates the small current surges in the test specimen cables into measurable voltage pulses?
 - a. One can use a resistor R in parallel with a small capacitance C; this RC network can be the feedback network of a charge-sensitive operational amplifier, the C acting as an integrating capacitor for the charge. The voltage pulse across the combination will be unidirectional.
 - A proper preamplifier must be used with proper input characteristics and low noise levels, so as to permit the tiny fast voltage pulses to pass through without attenuation or obliteration.
 - b. One can use a tuned LCR input network, which is the method used by the James G. Biddle Co. P.D. Detection System used in these experiments. The corona impulse sets off shock oscillations, the first negative half of which is integrated and amplified (attention to bandwidth of amplifier.)
- Detection sensitivity is defined as the fraction of the terminal corona-pulse voltage that appears across the detection impedance Z for measurement.

 This has to be answered by a proper calibration method preceding the testing with each new test sample inserted. Analysis has been done by several authors [1, 9, 11].

Figure 5. Test Set-Up for Measuring DC Partial Discharge.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6a. D.C. High Voltage Test Cabinet.

ORIGINAL PACT IS OF POOR QUALITY

Figure 6b. D.C. and A.C. Control Circuitry and Multichannel Analyzer.

Two sets of commercial equipment have been employed by us for work reported herein:

- L1) Earlier on, a borrowed facility located several miles away from Goddard Space Flight Center was used. It consisted of a 664 000 series, ±40 kv, 3 ma D.C. power supply and partial discharge detection system by J.G. Biddle Co. of Blue Bell, Pa. The output pulses were coupled via buffer-isolation amplifier to a ND-100 multichannel analyzer made by Nuclear Data Corporation of Schaumburg, Illinois. Vacuum capability was available.
- II.) With moneys provided by the 506 RTOP a new facility was recently established at Goddard Space Flight Center. It consists of a 664 000 series, ± 60 kv, 5 ma D.C. power supply and P.D. detection system by Biddle Co. and a ND-65 multichannel analyzer by Nuclear Data Corporation.

A.C. and A.C.-D.C. superposed capability are now also available, but work with that is not reported in this document.

Vacuum system is a planned addition for this year.

All measurements are made in an electrically shielded room with its own isolated and filtered power lines. The test sample is either immersed, including cable ends and metallic couplings in Fluorinert FC-40 (3M Co.) electronic liquid, or in a 10⁻⁶ torr vacuum. Care is taken to see that cablings and vacuum feedthroughs are corona free.

As discussed in the theory section, during the act of voltage rise, if this goes above P.D. inception voltage and n rise time is fast compared to the time constant for establishing an equilibrium voltage distribution, then many more discharges will occur during the voltage step and for a short time following it than on the quiescent voltage plateau. In essence the voltage rise corresponds to ¼ A.C. cycle, the voltage distribution is capacitative rather than resistive and the blocking space charge is not yet equilibrated. For these reasons, D.C. partial discharge testing has been investigated as a stepwise ramp-plateau sequence rather than just one quiescent measurement at the rated voltage of the test object.

The ramp-plateau sequence generally consists of dividing the voltage range from 0 to maximum into sections. For example, if maximum voltage is 8 KV, then the first ramp would be from 0 to 2 KV in 10 ± 2 seconds while acquiring data, followed by a 2 minute wait, followed by a 100 second acquisition of pulses at 2 KV, then the next ramp and plateau, and so on and so forth to 8 KV. Finally the voltage is reduced to 0 in 10 seconds, but collecting data for 40 more seconds to obtain all the relaxation counts. Or, one can go up in steps of $\frac{1}{2}$ rated voltage V_R and such a time profile is illustrated in Figure 7.

It must be stated here immediately that the P.D. pulses acquired during voltage increase or ramping are due to the test sample and *not* due to "noise" on the autotransformer of the power supply. Any such noise has been filtered out by two stages of filtering between the Biddle power supply and the power separation filter of the detection system. Verification tests of this have been carried out on capacitors of the same capacitance and voltage rating, but made by different manufacturers [12].

RESULTS

I. Influence of Ramp Test Variables

These variables are ramping speed, length of sojourn at intermediate plateaus, and interpolation of voltage at which P.D.'s first appear upon ramping. Initially one has to obtain reasonable repeatability of baseline P.D. histograms on the chosen test sample under constant conditions. Of course, one must never expect exact repeatability from P.D. measurements since the discharge phenomenon is a probabilistic process. Also, as discussed above, for good dielectrics, if the voltage is raised over the same voltage range a second time, immediately following a first time up, then the P.D. activity is much reduced due to the injected space charge and possible ferroelectric effects. Nevertheless, a once per day P.D. run on a tubular mylar capacitor of 10,000 pf, 8 KV rated voltage mounted in a continuous 10⁻⁶ torr vacuum was reasonably repeatable after several days. Between runs the capacitor remained shorted to

Figure 7. Typical Ramp Test Time Profile for D.C. P.D. Measurements.

TIME

ground. Thereafter, one change in the ramp test schedule was made in the once per day run.

Summarizing the findings gives: 1.) For a first approximation, ramping speed on a "stabilized" test specimen has only a small effect within the range of present usage. That is, whether $\Delta V/\Delta t$ is 2 KV/1 second or 10 seconds or 40 seconds does not influence corona much more than data spread at the *same* speed from one measurement to another, providing one acquires counts for a few seconds after the ramp is finished. 2.) A closer look reveals that (a) fast ramping evokes somewhat more counts: (b) fast ramping produces more high energy pulses: (c) a ten second part-way ramp is a reasonable choice for practical operation within our 60 KV available range of voltages. 3.) A single ramp to rated voltage in the same time as the sum of the part-way ramp times causes slightly fewer total pulses and these are shifted somewhat toward the lower energies, surprisingly. 4.) The voltage range upon ramping within which the very first few low energy P.D.'s appear, corresponds closely to the A.C. inception voltage at the 10 picocoulomb (pc) level. Table 1 illustrates this aspect.

The conclusion is that for any one comparative study of partial discharge characteristics a strict and consistent time regime should be adhered to. Nevertheless, the small change of P.D. counts with a 40-fold change of ramping speed indicates that relatively little error is introduced even with manual ramping, and that large differences in P.D. behavior as seen below are truely characteristic of the test specimen. Furthermore, in the absence of an AC high voltage power supply or when AC applied voltage is undesirable, then a good estimate of the AC inception voltage of corona can be obtained as the DC voltage where pulses first appear upon ramping, as shown in Table 1.

II. Faint Object Camera (FOC) Study

We used D.C. P.D. measurements as comparative tests to improve the Westinghouse de-

Table 1. Comparison of D.C. ramp and A.C. partial discharge CIV on some commercial capacitors.

Sample description	D.C. voltage ramp where pulses first appear 2 pc level, 3 pc level	No. of pulses/ 10 sec. ramp	A.C. inception voltage at the 10 picocoulomb level
Ceramic caps. 720C8109: 1200 pf			
40 KV rated			
S/N 70	17.5 - 20 KV	(1 pulse)	23.8 KV peak
S/N 71	27.5 - 30	(1)	Above 26.6 KV peak
S/N 72	10 - 12.5	(1)	14 KV peak
800 pf, 35 KV rated			
S/N 73	15 - 20 KV	(1 pulse)	20.3 KV peak
S/N 74	10 - 15	(6)	17.5 KV peak
S/N 75	20 - 25	(4)	25.9 KV peak
Cylindrical Mylar caps			
B32237, 10,000 pf,			
8 KV rated			
S/N 8	0 - 2 KV	(13 pulses)	2.5 KV peak
S/N 9	0 - 2	(45)	1.9 KV peak
S/N 10	0 - 2	(1)	2.5 KV peak
S/N 12	0 - 2	(26)	2.2 KV peak
Flat, encapsulated			
Mylar caps. B32227			
10,000 pf, 6.3 KV rated		(224)	0.20 1/11
S/N 13	0 - 2 KV	(234 pulses)	0.38 KV peak
S/N 14	0 - 2	(104)	0.45 KV peak
Impregnated Micapaper KMR 1A 3533SP-5			
10,000 pf, 8 KV rated			
S/N 19	0 - 2 KV	(4 pulses)	3.0 KV peak
S/N 18	2 - 4	(1)	4.0 KV peak
S/N 17	2 - 4	(10)	2.7 KV peak

sign of the packaging of the FOC vidicon tube of the Space Telescope satellite as illustrated by Figure 8. The two main tasks were (1) essentially to aid in choosing the most suitable potting compound and (2) investigate the front end design and improve it around the NESA (Non-Electrostatic Application) guard plate (1/8" thick glass with thin conductive transparent coatings on both sides, leaving a narrow rim uncoated). The general approach was to manu-

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8. Early FOC vidicon tube packaging design. Courtesy of FOC. Space Telescope project.

facture realistic witness samples, in the case (1) of several potting compounds around the actual photocathode bell, in the case (2) of three different front-end simulations. After manufacture, a baseline P.D. test was done in high vacuum. Then all samples were thermal cycled in air from - 20°C to + 45°C at least 10 times to exacerbate defects and thermoelastic stresses. This was followed by another P.D. test in vacuum, then a Life test of at least 1000 hours at - 17.5 KV in vacuum, followed by another P.D. test. An extensive report is published elsewhere [13]; only a few details can be given here. Figure 9 shows one of the results: a marked change in P.D. histograms on the Qualification Unit #1 occurred when the front side of the NESA plate was left floating, (high voltage was on the inner-side), compared to when it was grounded. Now P.D. pulses at much lower voltages appeared than before, warning of trouble to come. Indeed, catastrophic breakdown occurred at 10 KV. Physical examination

2	0	40	60	80	100	120	140	160	0	20	40	60	80	100	120	140	16	0
			CHARG CALIB		COCOUI N: 1 + 2		0 -	- 2.5 kV	3					COCOU ON: 1 +	JLOMBS 200pc	0+	2.5	kV
							2.5	kV	2							2.5	kV	
						<u> </u>	2.5	+ 5 kV	7	•—		1	1			2.5	÷ 5	kV
							5 k	V	3							5 k\	,	
2								≻ 7.5 kV sec	5	11	11		1		1 1	5 →	7.5 1	kV 11
1								kV D se c	1			1			1	7.5	kV	
111								+10 kV		26 3	131 2	21 4 1	11	+	1 AT 22 1 AT 27 1 1	1pc 7,1 1pc	5 +	10 kV
1		1						kV) sec				BREAK	DOWN]		10 k	٧	
7	1		4				10-	+ 12.5 kV				-						
1 2 1	•	1			1			5 kV) sec ch										
12 1		1	1	1		1	 12.	5+15 kV										
11 1	•	•	1			1		kV D sec eac	h						1	1		

Figure 9. P.D. histograms of Qualification Unit #1 comparison of NESA plate floating (left) and NESA plate front surface grounded (right).

of the sample later showed this *not* to be a bulk breakdown, but a surface problem at the glass-potting interface where there was bad adhesion.

Figure 10 shows comparative histograms of potting with CPC 41 polyurethane (left) and Uralane 5753 LV (right), both with primers, and after both had been subjected to 20 thermal cycles and tested after 1½ hours in high vacuum. Clearly Uralane was the more desirable potting compound.

When relatively high conductivity (10⁻¹¹/ohm cm) polyurethane Feldex R-6 was used as

ORIGINAL PAGE IS

packaging around the front end, then two interesting things were observed. One was that now more P.D. pulses occurred on the 100 second quiescent dwells at constant voltage than on the 10 second ramps. The other was (having inadvertantly trapped two large bubbles at partial pressures on the overhang of the NESA plate and on its high voltage side) appearance of P.D.'s at – 17.5 KV in the several thousand picocoulomb range, rather than the usual several hundred pc's. Figure 11 shows the histogram (taken here at – 40 KV in FC – 40 liquid and for 600 seconds for puposes of emphasis.) End of scale calibration is 8000 pc, and the histogram emphasizes two peaks of large picocoulomb content.

Figure 10. P.D. histograms of CPC-41 (left) and Uralane 5753 (right) potting of cathode bell, after 20 thermal cycles, tested after being in 10⁻⁶ torr vacuum for 1.5 hours.

600 SECONDS OF TIME 8000pc FOR ACQUISITION OF DATA

Figure 11. P.D. histogram of front-end NESA plate witness sample potted with Feldex R-6. Voltage - 40 KV, data collective time 600 seconds, calibration 30 → 8000 pc. Sample immersed in Fluorinent FC-40 for test.

III. Potting Materials Study

It seemed desirable to do a more systematic D.C. partial discharge study on candidate potting materials, cast in very simple geometries. To show the bewildering variety of resins to choose from, a table reproduced from Wm. Dunbar's 1979 report [14] is given in the Appendix II as Table 2. One can summarize the most desirable properties as target properties and these are given in Table 3. An additional criterion to help in selecting out the most desirable resins for high voltage potting compounds is low Shore hardness. In this way, the cured resin can be dug into to repair embedded circuitry and/or the softer resin formulations can aid as cushioning against the vibrations of launching. Table 4 lists the materials tested in this study.

One of the selected resins is devolatilized RTV 615. The devolatilization was done by

Table 3. Target Properties for High Voltage Potting Materials

Electrical properties:

Arc resistance > 60 seconds

Dielectric constant < 6

Dielectric strength > 350 volts/mil

Surface resistivity $> 10^{12}$ ohm

Volume resistivity $> 10^{12}$ ohm-cm

Other Physical Properties

Shrinkage < 3%

Age shrinkage < 0.5%

Service temperature - 55°C to + 105°C

Heat distortion temperature < 100°C

Coefficient of Thermal Expansion < 1.5 x 10⁻⁴ °F

Outgasing: Total weight loss < 1% Condensibles < 0.1%

Maximum cure temperature

Pot life > 30 minutes

placing 2 lb of the RTV 615 resin into a 10 inch diameter by 2 inch deep aluminum pan, which gives a 0.5 inch depth of resin. This was brought to a 10⁻⁵ to 10⁻⁶ torr vacuum and heated for 24 hours at 150°C, as measured by a thermocouple junction in the resin. Subsequently the viscosity had increased by 10% and the outgasing was decreased to less than 1% total weight loss and less than 0.1% condensibles. The latter is the desired result of the devolatilization.

100°C

Table 4. Potting Compounds Considered in this Study, the First Four of Shore A Hardness, $A \cong 50$.

					
Potting Resin:	Primer:	Volume Resistivity in olim-cm: 25°C	Dielectric Constant: 25°C	Coeff. of Thermal Expansion per °C	Glass Transition Temp. Tg
DC 93-500	DC 93-060	6.9 × 10 ¹³ (6.2 × 10 ¹⁴)	2.7 at 0.1 Mhtz (.0016)	300 X 10 ⁻⁶	- 115°C
Uralane 5753 LV	PR-1	$\begin{array}{c} 1.2 \times 10^{16} \\ (2.3 \times 10^{16}) \end{array}$	2.9 at 1 Mhtz (.017)	150 X 10 ⁻⁶	- 6.5°C
CPC 41	PR-1	~ 10 12	3 at 1 Mhtz		
FELDEX R-6	PR-420	~ 1011	5	180 × 10 ⁻⁶	
Conathane EN-11 (Too hard) (Elevated temper- ature curve)	PR-1	4.3 × 10 ¹⁵ at 25°C; but 4.8 × 10 ¹¹ at 130°C	2.9 at 1 Mhtz	140 X 10 ⁻⁶ °C	- 75°C
Devolatilized RTV 615	DC 93-060	4.5 × 10 ¹³ (1 × 10 ¹⁵)	3.0 at 1 Khz & 100 hz	~270 X 10 ⁻⁶ °C	- 120°C
2B74 Polyure- thane		1 × 10 15	2.9 at 1 Mhtz 4.2 at 100 hz	°C 100 × 10-6	
Hysol PR 18M		2 × 10 ¹³	3 at 1000 Mhz		

The material samples were cast in simple circular discs which would easily lend themselves to introduction of controlled-sized voids. However, not being constrained, these samples could not be thermoelastically stressed as could the FOC concentric-cylinder, case (1) type witness samples. (a) So-called perfect samples, 0.040 inches thick.

(b) "Imperfect". 3-layered sandwich samples with pillbox void purposefully introduced

- (c) 3-layered sandwich samples without pillbox voids, as controls. These were made of 3 separate cured pieces, adhered together with the same resin. When viewed at an oblique angle these showed some unintentional thin imperfections at the layer interfaces.
- (d) "Perfect" samples with potted-in brass button electrodes. This design was necessary for measurements on the silicone rubber materials. When perfect samples as in (a) had vapor-deposited aluminum electrodes applied to the silicone rubber materials, these electrodes were not conductive across the diameter of the electrodes. This was most likely due to

the well-known problem of getting good adhesion to the silicone rubber. The potted-in brass button electrodes could be primed before the potting and then the silicone rubber adhered well.

a) Results of partial discharge testing of the Materials Samples:

Data tabulations of materials P.D. tests follow in Tables 5(a-d) through 8(a-f), as measured at various times during 1982-1983. The earlier data was taken with the borrowed 40 KV Biddle detector and ND 100 multichannel analyzer, later data with the new 60 KV Biddle equipment and ND 65 analyzer.

Some of the results are:

(1) The "perfect" Feldex R-6 samples begin to have P.D. pulses already at about 60 volts/mil or on the 0 to 5 KV ramp as compared to the Uralane and Conathane EN-11 samples which start much higher. The Feldex samples also show evidence of overstress at less than 400 volts/mil and fail after a few seconds at around 20 to 25 KV. The Uralane and Conathane can be taken to 40 KV or 1000 volts/mil and not fail. In the Feldex-R-6 samples the charge content of pulses is generally well below 100 pc, but there are a very large number of them, even at quiescent voltage. Small picocoulomb pulses are not harmless if there are enough of them. Howard [15] states that there is evidence that P.D.

Feldex R-6 S/N 13 "Perfect". Thickness = 40 mil. 1982 Data: *Table 5a.

Calibr: <u>1.5→300PC</u>			7µa steady current	5.5µa steady current
251→300pc				Ì
201→250				
151→200				
S1→100 101→150 151→200	-	_		-
21→100	C1 C1 —		רו נו—	6
26→50	2 <22 pc <37 pc <322 + 34 pc <38 + 46 pc <25 + →50 pc	$\begin{array}{c} $	15 4 4 11 11	39
ΣN 1.5→25	1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	3976	2130 99 579 540	12677
N	28 282 26 26 857 738	3997 3997 1260 492	2147 106 585 552	12712 679 4566 6572 65858
TIME	01 100 100 100 100	10 100 etc.		(100) (200) (250)
VOLTAGE KV	0+2.5 2.5 2.545 5 5 5+7.5 7.5	7.5→10 10 10→12.5	12.5→15 15 15→17.5 17.5	20 20→22.5 22.5

OF P

*Explanation: \(\Sigma\) R gives the total number of pulses in the calibration interval 1.5 to 300pc. This is divided up into regions of charge where the pulses occur, eg. 1.5 to 25pc, 26 to 50pc, etc.. etc. Under these column headings the data is listed as either \(< 22 + 34pc, meaning "Most counts less than 22pc

plus one at 34pc.

or: 3976 without a pc symbol behind it, meaning a pure number of counts."

えな (はんだけに く

	Calibr: 1.5→300PC	3µa steady current 4µa steady current		2µa steady current 3.5µa steady 4.5µa steady	4µa steady		3µa steady	
	251→300pc				+282 pc			
1982 Data: Feldex R-6 S/N 11 "Perfect". Thickness	201-250							
11 "Perfect"	26-50 51-100 101-150 151-200							
R-6 S/N	101-150							ς.
ita: Feldey	51→100	wn	.,	be		rity.	pc 38pc	28
1982 Da	26→50	turn down	Same polarity.	< 9pc < 5 + 19 + 29pc <23 + 31pc <16pc	18 + 35pc 14 + 30.32pc <32pc	Reverse polarity.	3 + 11 + 29pc <31 + 38pc	~100
Table 5b.	2N 1.5+25	3 < 4pc 0 9 < 6pc 1 80 <13pc 337 <41pc Some bursts		\$ 9pc \$ 5 + \$ 13 + \$ 16 pc	∧ ∧		ν ω +	~3800
Ta	N N	3 0 9 1 80 837 Some	Up Again.		31 56(1) 142(2)	Up again.	0 0 5 163	3972
	TIME	10 100 10 100 100 100	minutes.	10 100 etc.		minutes.	10 100 etc.	5
	VOLTAGE KV	0+5 5 5+10 10 10+15 15	Ground for 5 minutes.	0+5 5 5 10 10 10 10 15	15÷17.5 17.5 TOTAL	Ground for 5 minutes.	0+5 5 5+10 10	15

ORICA OF POUR

	Calibr:	June C.	4.3μa steady current 5.5μa	5.5µа
40 mil.	→300pc			
Thickness = 40 mil.	→250		- "	
(~20mil).	→200	r	1 —	
Feldex R-6 S/N 38 Tiny Spherical Void (~20mil).	→150	10	6	
38 Tiny S	001↑	-	-	
R-6 S/N	→20	<16pc < 8 pc <16 pc <22 pc	28pc 32pc 28(3)pc	<pre><!--3 + 22-3/pc 6 <!</td--></pre>
	ΣN 1.5→25			
Data:	ΣN	5 10 58 233	962	422
table Sc. 1982 Data:	TIME	10 100 etc.		20
ladic	VOLTAGE KV	0+2.5 2.5 2.5+5 5	3≠7.5 7.5 7.5≠10 10	0 -01

ORIGINAL DANG 19 OF POOR QUALITY

	Calibr:	1.5→300PC 4.5μa current 4.5→3μa	5µа
:	- 40 mil. →300pc		1
Feldex R-6 S/N 37 Tiny Spherical Void (~20mil) Thisteness 2.00	+250		
1 (~20mil)	→200	~ ∞	
oherical Voic	→150	9	
37 Tiny Sp	001↑	m 7	discharges - turn down
x R-6 S/N	720	6 	lischarges _
Felde	2N 1.5→25	1993	ating d
Data:	ΩN	205 2002 2070 158 	Accelai
Table 5d. 1982 Data:	TIME SEC	10 100 efc.	
Table	VOLTAGE KV	0→5 5 5→7.5 7.5 7.5→10	

	→300pc			
1982 and 1983 Data: "Perfect" Uralane 5753 LV S/N 8P Tray !	→250			
ie 5753 LV	→200			
fect" Uralan	150			
Data: "Per	100			
and 1983	→20			
6a. 1982	ΣN 1.5+25			
Table 6a.	TIME Σ SEC	01	etc.	

VOLTAGE KV

Calibr: 1.5→300PC

		1 1 <90pc	_
	at 18 KV 1 1 41pc 34	41pc <30pc	
	-27 pc		<%pc
	1 69 25 245(1)	59 345(1) 5955(2)	769(3) 4
100 etc.			20
0+5 5 5+10 10+15 15	15÷20 20 20÷25 25	25→30 30	30+0

1+3

£;±

mil)
9
3
- >
7P Tray
7P
N/S
5753 LV
Uralane
"Perfect"
Data:
1983
and
1982
99.
Table

	Calibr: 1.5→300PC		ORIGIT!
1982 and 1983 Data: "Perfect" Uralane 5753 LV S/N 7P Tray I (40 mil)	→300pc		
	→250		
	7500		-
	150	~	n.
	100	~ -	9 1
	→50		- 23, 27pc
1982	→ 25	<pre><4pc <4pc <5pc 6pc 6c0 pc 124</pre>	
Table 6b.	NN	2 3 3 1 67(1) 292(2) 632(3)	
	TIME	100 100 e tc.	20
	VOLTAGE KV	0+5 5-10 10 10-15 15 15-20 20 20-25 25 TOTALS	25→30 30 30-0

_	Calibr:	1.5+300PC				15→3000PC	U beyond 300pc 1.5→300PC
II (40 mil	→300pc				-		-
82 and 1983 Data: "Perfect" Uralane 5753 LV S/N I Tray II (40 mil)	÷ →250				C1	• -	•
ie 5753 LV	7200				2	ı	
rfect" Uralan	→150			-	mm	-	
Data: "Pei	001↑			7	- 9		-
and 1983	05←		20pc	8	13	-	-
1982	ΣN 1.5→25		^ \	2 × 2 × 2	21 13 2 13 2 65 65 6	6	(1
Table 6c. 198	N N	0000	0 2 6 7 5	45	109 87 75	13	4
Ħ	TIME	100 etc.			888	00	20
	VOLTAGE KV	0+5 5 5 5+10 10 10+15	15 15+20 20 20+25	25 25→30	30 (1) (2) (3)	4	30→0

ORIGINAL YALLAM OF POOR QUALAM

Table 6d	VOLTAGE TIME EN KV SEC	0+5 10 5 100 5+10 etc.	0	96			90		•
1982	ΣN 1.5→25			Ω() †				:
and 1983	05↑			7pc	3				:
Data: "Pel	00 1↑				378	+ 13 Y			:
rfect" Uralar	150					97 pc	+ 112 + 142pc	;	•
ne 5753 LV	4200					•	142pc		
S/N 10 Tr	→ 250						+240 DC	240	+740pc
Table 6d: 1982 and 1983 Data: "Perfect" Uralane 5753 LV S/N 10 Tray I (40 mil)	→300pc								
•	Calibr: 1.5→300PC				ORI OF		NZI.	2	

<u> </u>	Calibr: 1.5900PC		15 + 3000PC + 560, 580 pc	820, 1550, 2000, 2040pc + 600, 820pc 1.5-300PC	15 ÷ 3000PC + 580, 640, 1130pc 15 ÷ 3000PC 15 ÷ 3000PC 1 + 780, 840pc	900, 1620pc + 910, 1130pc
= 75 mi	-	Field	2 +	, 2000, 2 + 6 + 6	- 580 + - 580,6 - 5151 - 1	8 ‡
diam	T O	plied 1		1550		
mil,	\$	k ∀ 2		820	•	•
h = 43	1	S — Average Applied Field			1	
nil; void	-350 -400 -450 -500	VOLT				
(t = 7.5 m	908 1	STARTS AT 6.5 KV = 86	÷ ;		-	
box Void	-200250	.TS AT 6.5		_	-	9
with Pill	738	STAR	-		2	
V S/N 35	S ↑	-	-22	m m	20 m 25	
.7 88	8	- 7	101 + 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	105 -		•
ne 57	Ť	36 PC	1	1		
Urala	\$	7 + 14 + 10 i	4-04	w -	↑ - 38 - ↑	1
ata:	25	7	2 × × × × × × × × × × × × × × × × × × ×	120pc 13pc		∞
983 D	ZNI.5725	00%/80	£ 5 8 8 8 9		\$288 1001	-
and 1	TIME	£6. 30 0	700	1 200		
1982	† 3	67 1 133 et	266		•	
Table 6e: 1982 and 1983 Data: Uralane 5753 LV S/N 35 with Pilibox Void (t = 75 mil; void h = 43 mil, diam = 75 mil)	VOLTAGE KV	\$ 2 2 10 15 15 15 15 15 15 15 15 15 15 15 15 15	15 ÷ 20 20 (1) 20 (2) Totals(3) 20	20→25 25 300	25 25 + 30 30 400	0 2 2

mil)
25
iam = 125 mil)
ē
Void ($t = 96$ mil; void $h = 43$ mil, void
43
<u>"</u>
void
mil:
96 :
<u>:</u>
Void
Pillbox
5753 LV S/N 34 with P
34
N/S
I/S A71
5753 1
Uralane
Data:
1983 Data
pur
1982 and
19
able

	Table 6f:	1982 and	1983	Data:	Uralan	e 5753	/S ^1	3 4 E	ith Pill	ox Voi	id (t =	96 mi	l: void	h = 43	mil.	Table 6f: 1982 and 1983 Data: Uralane 5753 LV S/N 34 with Pillbox Void (t = 96 mil; void h = 43 mil, void diam = 125 mil)	.5 mil)
	VOLTAGE KV	TIME	ā	2×1 ×25	F	8 T	150	20	903	:50	6	1 380	06) ↑		7 00	→450 →500pc Calibr: 1.5→300PC	ᆈ
	ž	25															
	2 <u>+</u> 10	et 5	57	+ 01 >	< 10 + 22(2) pc	IJ			-	S	TARTS	STARTS AT 6.4 KV	K K				Ð.
	01		~	24, 25pc	¥												: F
	2 10		77	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_												· ()
	15		~	1, 6, 9pc	2												
	15 + 20		89	2	7	-											•
	22		*	+ V	19pc												
	\$\$ \$\$		25	\ = \$	m												11
	25	-	=======================================	× 22 ×	-	_											
	Total	•	24(2)	2	-	-											• •
	25+30		45	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	~											•
	30	• •	25(1)	< 25.2	*	-			_								
	Totals	7	125(2)	< 25 pc	v.	*		4	~								
		ā	Bursts	•		,											
	30	~1	57(3)		~	_		_									
2	Totals		132(4)	< 25pc	12	m		, ,	m							15+3000PC	<u>ر</u>
	2		8	7					-							+ 1670 pc	
	Totals	2	28(6)	. 20		-			. ~						+	+ 1070, 1600, 1690	20
		•		2		*			17				+	+ 590, 1070, 1180,	070, 1	1180, 1500, 1670pc	<u> </u>
	30+35	•		ž Š V		_							-	_			•
	35			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				~		_						1 + 1010,	2040 pc
		7 3	24(2)	,	^ 참			4	m	-						1 + 1010, 1750, pc	1750, pc
		***	37(3)		> 50 pc	m	·		*		1			510, 7	80, 10	510, 780, 1010, 1760, 1800, 2040(2)pc	2040(2)pc
	Totals	-14	52(4)														
		900	83(6)		< 130 P	PEAK AT 80pc	T 80pc		∞		1		S	00, 560	1, 710-	500, 560, 710+ 1020, 1500+ 1840pc	840pc
																4 + 2050(2)	
		9	Ę	< 21 pc		-		_			-					1.5 → 300PC	21
	6.5µa Burst!		301(3)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	9	- 1		- ~	7		m m						
	35→0		Š		4 × 33 pc	90				•	7						
	1		1		1	;				•	ı						

1982 and 1983 Data: Uralane 5753 LV S/N 36 with pillbox Void (t = 90 mil; void h = 41 mil, void diam = 125 mil)	Calibr: 1.5→300PC		15 + 3000PC + 540 + 2210pc 520 540 + 2210pc	.5→300PC		15-+3000PC + 1180, 1370 + 2360pc 1.5-+300PC	15 → 3000PC + 630, 800, 850,	1050 630 +, 800. 550, 1050 1.5→300PC
il. void di	-500 pc Calibr:	· I	¥1+ 3 20 20			+ 108.71	<u>31</u> + :	1 03 10 1.5
= 41 m	¥20							
void h	8	<u> </u>						
90 mil;	98 F	STARTS AT 5.5 KV						
= 1) þi	906	FARTS ,		-				
box Vo	7250	ю					-	
with pull	+ 200							
/ S/N 36	9S T			-		erre and	74	m
5753 LV	8 T	+ 55pc 2 2 2 Pc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	~		n n	-	m
Uralane	\$			ች	9 –	80 M M	-	\ \$ \$
Data:	£ 43	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ᅙ~	<11+34pc	^^ 5. 7. 8. 7. 8.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 20 pc	1
1983	A	42 5 7 7 7 46(1) 55(3)	3(4)	53	22	53 70(1) 117(2)		391
1982 and	TIME	ft 50 5				^=		-
	VOLTAGE KV	1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90	20-25	25	25 30 30	8	30±0

	Table 6h:	1982	and 198	1982 and 1983 Data:	Uralane 575	Uralane 5753 LV Empty cables in Fluorinert.	cables in	Fluorinert.		
VOLTAGE KV	TIME	N	ΣN 1.5→25	120	001↑	150	→200	→250	→300pc	Calibr: 1.5→300PC
0+5 5 5+10 10 10+15 15+20										
20 + 25 25	0.00	∞ ∞	<10pc <11pc	32pc 26pc						
25→30	01	7	<17pc							
30 30	100 etc.	15	<13 pc	•	od.					15+3000PC
30+35 35		57 23	<25pc	v 4						15+3000PC
35		4		<50pc						1 S+300PC
35-0		9	<16pc		-				•	
					Empty Biddle System	ile System				
25+30 30 30+35 35	10 100 etc.	9 2 6 6 6 6	<pre><8 pc <13 pc <21 pc <21 pc <19 pc <19 pc <19 pc <10 p</pre>	,	-					1.5+300PC
35+0		æ	<17 pc			-				

ess at	→300 →350 →400 →450 →500 →550pc Calibr:					15→ 3000PC	1.5 + 300PC	15→3000PC		1.57 300PC		15 + 3000PC	1.5 7 300FC
thickne	→55(
помп	12 00												
of unk	1450												
lefects	400												
(Flat c	+350		7.5 KV										
aminated Electrode	1300		STARTS AT \sim 7.5 KV										
1983 Data: Uralane 5753 LV S/N 50 Laminated (Flat defects of unknown thickness at interfaces. No Pillbox Void. Spraypaint Electrodes).	→250		STAF										
3 LV Soid. S	4200								-		-		
alane 575 Pillbox V	→150 →200										- •	Î	
ata: Ur es. <i>No</i>	8 ↑							-	-		9		
1983 D nterfac	§				25 pc		/pc 1	1	<40pc 3	77	\$ vs \$		
1982 and 1983 Dat. laminated interfaces.	2n1.5+25		5 pc</td <td>\ S. \ S. \ S. \ S. \ S. \ S. \ S. \ S.</td> <td>√5 + 25 pc</td> <td>24 ZZ</td> <td><18+27pc 1</td> <td></td> <td></td> <td>\$ \frac{1}{2} \fra</td> <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td></td> <td><24 pc</td>	\ S. \ S. \ S. \ S. \ S. \ S. \ S. \ S.	√5 + 25 pc	24 ZZ	<18+27pc 1			\$ \frac{1}{2} \fra	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		<24 pc
1982 Iamii	ZZ		15	78 2	2 00 5	7	36	-	0 4	78	103	10	128
Table 6i:	VOLTAGE KV	0+5 5	5→ 10 10	10+15	15 15 → 20	20	20→ 25 25	25	25→ 30 30	30	30→35 35	35	35→0

Table 6j: 1982 and 1983 Data: Uralane 5753 LV S/N 51 Laminated (Flat defects of unknown thickness at

· fo Alor		laminated interfaces.	ss. No I	illbox V	oid. S	land 1703 Data. Oralane 3/33 LV S/N 31 Laminated (Flat defects of <i>unknown thickness</i> at laminated interfaces. No Pillbox Void. Spraypaint Electrodes).	minated Electrodes	r fat der).	icts of	unknox	on thickn	ess at
VOLTAGE KV	ΣN1.5+25	}	00 ↑	→150 →200	00 2 ↑	→250	+300	+350	00)	¥ 50	-400 -450 -500pc	Calibr. 1.5→300PC
0 1 5	00											
24 10	\(\frac{1}{\sqrt{0}}\)	24				STAR	STARTS AT ~ 7 KV	7 KV				
10 10→15	2 \\ _ _ _ 3ec	5 5 5										
15	4	+ 28pc										
15→20	21 < 21	, 2										
20		pc 4	e									
20→ 25	24 < 17 pc	bc										
25	٠											
25→30		< 30pc										
30	57 < 19pc	_	2									,
30	9	> 60 pc									-i	15→ 3000PC
30→35 35	45 < 25 pc	pc 2	"		-						— I	1.5→ 300PC
			,								-1	15→ 3000PC
35	2 < 20 pc	ъс									-	200BC
35 → 0	86 < 27 pc	bc	-								-1	1.3 2 300FC

y.,

ORIGINE . OF PUT

Table 6k.	1982 and 1983 Data: Void.)	d 1983	Data:	Uralane 5	753 LV S/N	122 "Imper	fect" (Very	lopsided pla	Uralane 5753 LV S/N 122 "Imperfect" (Very lopsided plating with Pillbox
VOLTAGE KV	Calibr: PC	N	3+25	26→50	26→50 51→100	101→150	101+150 150+200 201+250	201→250	251→300pc
0	3→300	0							
0 1 0		90	9						
10 + 20		7	15				-	_	
20		'n	, C1				-	•	
20→25		S	m			_	•		_
25		7	9		_				•
25→30		6	œ						
30	3→300	7	9						
30	30+3000	4	_	7					-
30→35	:	S	_			_	•	_	+ 610 1420nc
35	:	4			_	_		•	+ 330 460nc
35	3→300	7							330, 000
35→40	30→3000	8 (-	7		· (1			+ 330, 540, pc
40	:	o	,	•				•	650pc
40	3+300	6	17	1	1	-		- -	+ 330, 460, 730pc
40+0	3	48	` .			-		-	

Table 6	Table 61: 1982 and	_	Data:	Uralane	5753 LV	S/N 1181	"Imperfect"	983 Data: Uralane 5753 LV S/N 1181 "Imperfect" (With Pillbox Void)	Void)	
VOLTAGE KV	TIME	CALIBR: PC	N	3+25	26→50	26→50 51→100	101→150	101→150 151→200	201→250	251→300 pc
0	901	3→300								
<u>0</u>	~20		40	m				-		
10+15			> 4	4						
15			. 0	•						
15→20			4	4						
20			0							
20→25			7	7						
25			0							
25→30			7	7						
30			4	ĸ				_		
30+35			6	∞	.=			•		
35			91	15		-				
35-40			=	6		_				_
40			37	37						•
40+0 0+0			62	99		7		71	_	-

Void)
Pillbox
(With
"Imperfect"
1281
N/S
^
5753
Uralane
Data:
1983
and
1982
;ш9
Table

										340, 420pc	490 pc	+ 380, 850pc	1100pc + 700, 730pc	790 pc + 340, 550pc	930, 1210pc
251→300pc		-		7		_									-
201→250		_					-	<u></u>			-				-
101→150 151→200		_							-	C1					
101+150					_			_					7		ю
51→100										-	-	-		13 pulses < 200 -	00
26→50								C1			C1			— 13 pul	4
3+25		01		81	∞	2	œ	6	01		12	6	-		22 164
N	0	13	-	20	6	9	6	13	<u>- 2</u>	9	91	13	9	17	29 172
CALIBR:	3→300									30→3000	3→300	30→3000	:	:	3+300
TIME	8	~20	90	~20	100	~20									
VOLTAGE KV	0	0+10	10	10→20	20	20+25	25	25→30	30	30+35	35	35	35→40	40	40 40+0

ORTO

	Table	Fable 6n: 1982		983 Data:	Uralane	5753 LV S	and 1983 Data: Uralane 5753 LV S/N 130P "Perfect"	erfect"		
VOLTAGE KV	TIME	CALIBR: PC	N	3→25	26→50	26→50 51→100	101→150 151→200	151→200	201→250	250→300 pc
0	001	3+300	0							
0 1 0	~20		0							
9	<u>3</u>	-	0							
10→20	~20		0							
20	9		0							
20→25	~20		C1	71						
25	90		0							
25→30	~30		_	_						
30		-	5	5						
30+35		30→3000	_	-						
35		:	0							
35		3→300	3	٣						
35-40		30+3000	0							
9		:	0							
40		3+300		7	C 1	_				
0 + 0 + 0		:	01	7	C 1	-				

	Table	Table 60. 1982	and 19	and 1983 Data:		2753 LV S	Uralane 5753 LV S/N 125P "Perfect"	erfect"		
VOLTAGE KV	TIME	CALIBR: PC	N	3+25	26→50	26→50 51→100	101→150 151→200	151→200	201→250	250→300pc
0		3→300	0							
0+10			0							
10			0							
10+20			0							
20			0							
20→25			C1	L1						
25			0							
25→30			-		_					
30			L1	_		_				(
30+35			m	C)	_					or Of
35			∞	7	-					ilíu F
35-40			∞	2	e					-C
40			4	=		C)				ت ا
40-0			35	31	r i	C1				•

Table 6p. 1982 and 1983 Data: Uralane 5753 LV S/N 1331 Imperfect

11 The Manager of Control of the Con

251→300pc		-							
201→250	-		-	•		~ 1 −	•	_	
151→200		-				(1			- 7 pulses -
101+150									
21→100							_		-
26→50		C1		C	•	4	C1	က	m
3→25	6	ω <u>4</u>	n 0	- ∞	•	<u> </u>	01	œ	167
N	00	. <u>6</u>	<u> 0</u>	m ∞	7	24 15	13	12	178
CALIBR:	3→300								
TIME									
VOLTAGE KV	0 0 0 0	10 10+20	20 20→25	25 25→30	30	35	3540	9	0 1 0 1

ORIGINAL PALL S

00m	22 pc	720	0 0 ↑	→! 50	→200	→250	→300 pc	Calibr: 1.5→300PC
5 11 7 147(1) 330(2) 24 569	1 1	<30pc <32pc <31 + 47pc 4	17pc	e l		-	-	
20 24 34 16 16	<pre></pre>	C1 C1		444	m m m	-	-	ORIGINAL OF POOR

2 12 3 37

	Calibr: 1.5→300PC							orig Of P	INAL OOR	(1) (1) (1) A
ray I	→300pc									
S/N 4P 1	→250									
"Perfect" Conap EN-11 S/N 4P Tray 1	005→		AT 7 KV				-		m	,
"Perfect" C	150					— دا د	· 1	1 1 1	, 4 (·
1982, 1983 Data:	00 1 ↑		-	-	C)	± < 75pc	\	√ <71pc		
	+ 50			- 소	;	<33bc	ن			9
Table 7b.	1.5+25		17pc	. 5 € .	₹ \$\ \$ \$	1	<14pc			<17pc
	Z Z		- 5	्। च	9	3960(2) 4007(3)	20	35	460(2)	25
	VOLTAGE KV	0+5 5	5+10 10	10+15 15		Bursts	20+25 25	25→30 30	Totals	30+0

ORIGINAL I

		lable	Table /c. 1982 Data:	Z Data:	"Feriect"	onap EN-11	"Ferfect Conap EN-11 S/N 6F 1ray 1	- <u>^</u>	
VOLTAGE KV	N	1.5+25	.+50	<u>80</u> ↑	150	002↑	→250	→300pc	Calibr: 1.5→300PC
0+5 5									
S+10	m	÷ ₹	3 6		STAR	STARTS AT 8.5 KV	ΚV		
<u>0</u>		₹? V							
10+15	2	\ \\							
15	٣	\ \ 4 \ 7							
15→20	15	<4 + 11pc	lpc						
20	4	₹		-					
20+25	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
25	173(1)	•		4					
Totals	365(2)			4					
	ຊ	<20pc							•
	302(1)	•	<32 + 47pc 1	17pc 1			-		
Totals	659(2)		Y	75pc 2	C 1		_		
30+0	8	<14pc	_	•					

_	
112.	("270")
N/S	= .07
ENT	
Imperfect	.041" and
Data:	Void =
1983	.083":
×	ш
Table	֖֖֡֟֟ ֖֖֖֓

		Table (T	7d. 197 = .083"	83 Data: : Void = .	Table 7d. 1983 Data: Imperfect EN-11 S/N 112, 1 ($T_t = .083$ "; Void = .041" and Diam = .075")	-11 S/N 112 m = .075")				
VOLTAGE KV	CALIBR: PC	Z N	3+25	26→50	81→100	51+100 101+150 151+200 201+250 251+300pc	151→200	201→250	251→300pc	
<u>0</u> 1+0	3+300	(1)	-	_						
0		4	₩.	-						
10+15		4	₹							
15		C)	C)							
15→20		01	6		-					
20		_	-							
20+25		15	12	-		-			î÷ -	
25		0	0							
25→30		17	4	-	_		_			
30		01	œ	-					1 +5	
30+35		17	91	-						
15		15	13	_					<u>-</u> +;	
3. *40		17	15	~1						
\$		21	21							

116	я.)
Z/S	diam.)
ENT	<u>8</u>
	thick,
Imperfect	5
<u>E</u>	8
	H
Data:	
1983	090
7e.	115
appe	.T. =

			lable /	e. 1983 ≅ .060":	Void = .0	nperfect EN 40" thick,	Table /e. 1983 Data: Imperiect EN-11 S/N 1161 (T \approx .060"; Void = .040" thick, .160 diam.)	-		
VOLTAGE KV	TIME	CALIBR:	N N	3+25	26→50	3→25 26→50 51→100	101+100	101-150 151-200	201->250	251→300pc
<u>0</u>	~30 100	3+300	<u></u> 0	12						
10+20	2		<u>E</u>	0	_		-	_		
20	<u>8</u>		4	4						
20-25	2		2	7			C)			
25	8		m	m						
25→30	2		<u></u>	6						
30			9	S		_				
30.+35			12	7	_	~ 1	-	-		
35			<u>+</u>	13						6;
35		30+3000	-				_			
35-40		3+300	<u></u>	œ		m			_	÷ -
\$		3+300	37	36				-		
\$		30+3000	4	-			_			1 +320pc
0+Q		3+300	25	22		_		~1		

ORIGINAL POSTOR
OF POOR CONTRACT

			Table 7	f. 1983	Table 7f. 1983 Data: Empty System	ty System			
VOLTAGE TIME KV SEC	E CALIBR: ΣN PC	N	3→25	26→50	51→100	26→50 51→100 101→150 151+200 201→250 251→30	151 →200	201→250	251→3(
0 0+20 ~40 20 100 20+30 20 30+40 40	3→300	000 % (11)	cı ~	ж <u>-</u>		-			

Table 7g. 1983 Data: Imperfect EN-11 S/N 117I ($T_t = 70 \text{ mil}$)

251→300pc		6;+ -			,	- + -				
201→250										C)
101→150 151→200	_									
101→150					_				_	
26→50 51→100								-		
26+50	-		_			7		-	C1	
3→25	15	9 -	- 4	æ	ĸ	9	<u>8</u>	2	66	4
ΩN	17	· -	· vo c) m	4	6	<u>8</u>	24	102(!)	45
CALIBR:	3→300									
TIME	~20									
VOLTAGE KV	0+10 10	10→20 0€	20→25	25 25→30	30	30+35	35	35→40	40	40 + 0

			Table	7h. 19	983 Data:	Imperfect	Table 7h. 1983 Data: Imperfect EN-11 S/N 1191	161		
VOLTAGE KV	TIME	CALIBR: PC	N	3-25	26→50	26→50 51→100	101+150 151+200	151+200	201→250	251-
0 + 10		3→300	S - \	~ - ~						
10+15 15			0 (1 O	n 71 ∞						-
20 20 20 20 20 20 20 20 20 20 20 20 20 2			- 5	4						
25 25 25→30			7	r					-	
30 30→35			∞ ∞	5	4	-			C1	
35 35→40			38 14	36	C1	-		-	-	•
40+0			46 98(!)	36 88	w 4	2	 -	т –	C1	m

ORIGINAL PORTO

The total of the second of the

		Table 7i.	1983	Data:	Perfect EN	7i. 1983 Data: Perfect EN-11 S/N 120, 53% RH, 72° C	, 53% RH,	72° C		
VOLTAGE KV	TIME	CALIBR: PC		ΣN 3→25	26→50 51→100	51→100	101→150	101→150 151→200 201→250	201+250	251→300pc
0 0+10 10 10+20 20 20+25 25 30 30+35		3→300	000000000000	0 m v	7 71					
35→40 40			9	6 45	2	-				OR OF

Table 7j. 1983 Data: Empty System (2nd time up) 56% RH. 77° F

Control of the second of the second of the second

1 / 18:11

VOLTAGE KV	TIME	CALIBR: PC	N	3→25	26→50	26→50 51→100	101→150	101→150 151→200	201→250	251→300pc
0 0→20		3→300	000							
20→30) m (8						
30-40 40			כו רו כו	— cı	-					
40→50 50			mo		C1	_	•			
20 -09 09 0 -09			38 5	36	- ~	רו ר	~1			_

The second secon

ORIGINAL C

			Table	7k. 1983	Data:	mperfect EN	Table 7k. 1983 Data: Imperfect EN-11 S/N 1231	31		
VOLTAGE KV	TIME SEC	CALIBR: PC	N	3+25	26→50	26→50 51→100	101→150	101→150 151→200	201→250	251→3
0 0→10	100 ~ 20	3→300	0 9	Ś						
10 10+20	002		- 6	- 1	· -					
20 20→25 35	<u>8</u>		(1 W -	C1 -					-	-
25→30 30			- r v	- v 4	C1					
30+35 35 35+40			0 ¥ ,	23		· ·			-	C1
40 40+0			15 57	36 36	- v	ιı —	~	-	- 5	

Table 71. 1983 Data: Empty System (2nd time up) 48% RH, 75° F.

101→150 151→200 201→250 251→300 _{pc}	
201→250	
151→200	
101→150	_
26→50 51→100	
26→50	
3+25	
N	0000011111-11
CALIBR: PC	3+300
TIME	
VOLTAGE KV	0 10 10 20 20 30 30 40 40 50 60

ORIGINAL PACE IS OF POOR QUALITY

			Table 7m.	7m. 1983	3 Data:	Imperfect E	1983 Data: Imperfect EN-11 S/N 1241	:41		
VOLTAGE KV	TIME	CALIBR: PC	Z W	1→25	26→50	51→100	101→150	101→150 151→200	201→250	251→300pc
0			0							,
01+6		3→300	9	\$						
01			L1	L1					•	-
10+30			25	20		C1 -			-	-
20			-							
20→25			12	x 0	C 1	-	_			
25			9	4			_			
25→30			22	17	4					
30			9	S	_				•	
30+35			21	15	C1	_	C 1		-	
35			34	39			- S -		+	•
35→40			28 28	<u>×</u>	m	m	C I		_	_
9			5	17	ю	_		_		•
07.04			7		61 pulses				9	6 pulses ─

ORIGINAL PAGE IS OF POOR QUALITY

	odi											+350, 430, 720, 1200pc	390, 540, 1230pc	+310, 510, 530, 610, 650nc		
	251→300pc				-	-				(٠١.	4		m		
	201→250						•		 (ra ·	ব			_	C1 —	•
=	101→150 151→200							C 1 (וי		C I				e	
1983 Data: Imperfect EN-11 S/N 1311	101+150					ı	L 1			m	m		m		-	
mperfect EN	§1→100							_		Ċ1		4	ĸ			
Data: l	20→50			_				_	_	L I	C)		Î	- 17 -	C1 4	r
	3+25		4 -	œ	L1	2	S	च	2	01	30		4		32	20
Table 7n.	N	0	4 -	10	C 1	7	7	0	9	61	43	13	14	7.2	41	20
	CALIBR: PC	3→300										30→3000			3→300	
	TIME															
	VOLTAGE KV	0	0 0	10+20	20	20+25	25	25→30	30	30+35	35	35	25-40	40	40	₹ }

			Table	70. 1983	Data: I	Perfect EN-1	Table 70. 1983 Data: Perf. ct EN-11, S/N 13"P			
VOLTAGE KV	TIME	CALIBR: PC	N N	3+25	26→50	26→50 51→106	101→150	101→150 151→200	201→250	251→300pc
0100		3→300	00							
01			0							
10+20			0							
20 + 25) M	ĸ						
25			e	ĸ						
25→30			4	7					-	
30			7	C1						
30+35 35		30+3000	0 0							
35		3+300	=	=						
35-40		30+3000	0							
4		30+3000	C1	_		_				
40		:	27	5 6					_	
4			12	=					i	

DC 93-500, #91. Poured in Vacuum, Primed (%" diam., .040" thick, cup) Tag on.	25-50 50-75 75-100 100-150 150-200pc															_			
DC 93-500, #91, Poured in Vacuum, I (%" diam., .040" thick, cup) Tag on.	75→100 10										_	_			-				
. #91. 040"	50-15												7		od69	. –			
93-500 " diam.	25-50												٣	4	Continuous to 69pc	S			
a: Çķ	3-25				-		4	-	٧.	7	7	C1	12	=	Contin	34			10
1983 Data:	ΣX				-	0	4	1	\$	C 3	15	3	11	15	40	39			01
Empty System with Clips and Cables	75→100 100→150pc	-						-							-				
vith Clips	75→100																		
System v	50→75															_			
	2550															-			
1983 Data:	3-25												-	7	7	7	S	4	8
1983	N	0	0	0	•	0	0	0	0	0	0	0	7	7	C1	•	10	4	S
Table 8a.	K	0	£	v	S → 10	01	10 <u>+1</u> 2	15	15-20	20	20-25	25	25→30	30	30+35	35	35-40	\$	6
•	SEC	9	2	90	01	8	0												80

	Table 8b.	1982	Data:	DC 93	-500. #9	2. Poure	d in Vac	unn	1982	Data:	RTV 6	15, as 1	received,	#93. Pou	red in
		Prim		diam Tago	.040" th ff.	iick, cup	Primed, (%" diam., .040" thick, cup) Tag off.	****	γaς Λ	anm P	rimed. (%" dian Tag	n., .040" off.	Vacuum Primed. (%" diam., .040" thick, cup) Tag off.	(d
SEC	K	ΩN	3→25	2550	SO-+7S	75→100	00-2-031 00-130 130300	150→200	ΝN	3+25	2550	50-75	75→100	100→150	25-50 5C-75 75-100 100-150 150-200pc
8	0	0							0						
0	£	0							0						
8	s	0							0						
2	<u>\$</u> +10	0							0						
8	2	0							0						
0	2 <u>10</u>	0							0						
	15	0							0						
	15-20	~	~						4	~		-			
	20	9	9						۲,	7					
	20-25	8	S						∞	7		-			
	23	90	œ						m	٣					
	25-+30	7	7						23	20	7	-			
	30	7	7						٣	٣					
	30+35	12	12 +						<u>8</u>		6	C1		_	
	35	53	36	~1		-			23	19	2	7			
20	35-40	79	76	rı.	-				70	70					

こので、日本の大学の日本では、こうで、日本の

	Table 8c.	1983 Va	Data: cuum.	RTV Primed.	615. <i>as</i> (½" diz	received.	1983 Data: RTV 615, as received, #94, Poured in Vacuum, Primed. (1/4" diam., .040" thick, cup.)	ured in cup.)	1985 Vact	S Data num. Pr	: RTV imed. (615. <i>L</i> ½" dian	<i>EVOL.</i> n040"	1983 Data: RTV 615, <i>DEVOL</i> , #96, Poured in Vacuum, Primed, (%) diam040'' thick, cup.)	ed in ip.)
					Tag off.	off.		 -				Tag	Tag off.		
SEC	K	Z	3-25	25-50	\$0-15	001←51	051001	\$0-75 75-100 100-150 150-200	ΩN	3+25	25-50	\$0→7\$	75→100	100→150	3+25 25-50 50-75 75-100 100-150 150-200pc
8	0	0							0						
2	Ţ	0							င						
8	8	0							0						
2	S -1 0	7	C)						0						
<u>ड</u>	9	-	-						0						
2	<u>SI+0</u>	~	m					-	0						
	15	•							0						
	15-20	9	9						C1	(1					
	20	0						-	0						
	20-25	7	S	7					\$	S					
	25	12	ï	~					0						
	25-30	±	٠	•	۲,				0;	7	7	-			
	8	9	s	-					0						
	30+35	53	11	S	7		_		91	œ	S	r,		-	
	35	28	25	6.3					4	4					
80	35-10	128	128						0	0					

Ē	3000°														i ·	* ***	-	
Vacui ff.	150																	
#97, no V Tag off.	100+150																	
1983 Data: RTV 615, DEVOL, #97, no Vacuum (Primed, Needle to Plane, cup.) Tag off.	3-25 25-50 50-75 75-100 100-150 150-200pc																	
/ 615. / to Plan	50→75													-	m			
i: RTV Needle	2550						-						_		_	9	-	
3 Date	3.45				C1		~		7	4	91	7	30	15	4	38		
198 P	N N	0	0	0	61	0	9	0	96	4	91	7	31	11	52	35	C1	
d in cup.)	150-200										-							
95. Poure)" thick,	100-150																	
# ₹																		
E <i>VOL.</i> am0	75→100																	
615. DEVOL. (½" diam 0 Tag off.	\$0-75 75-100 100-150 150-200															_		
RTV 615, DEVOL, Primed, (½" diam0 Tag off.													₩.				_	
Data: RTV 615, DEVOL, cuum, Primed, (%" diam0 Tag off.	3-25 25-50 50-75 75-100						~		*		•		7 3	2	2 2 8	2	-	
1983 Data: RTV 615, DEVOL. Vacuum, Primed. (%" diam 0	25-50	0	0	0	0	0	2 2	0	**	0	9 9	0	10 7 3	2 2		3 2 1	3 2 1	
	3-25 25-50	0 0	0	8 0	0 0	0 01	10-45 2 2	15 0	15-20 4 4	20 0			_				35-90 3 2 1	
Table 8d. 1983 Data: RTV 615, DEVOL, #95, Poured in Vacuum, Primed, (4," diam., .040" thick, cup.) Tag off.	ΣN 3+25 25+50		10 0-5 0			0 01	10-45 2 2	15 0	15-20 4 4	20 0			_				35-0 3 2 1	

RTV 615 straight out of the can somewhat worse.

No significant difference in partial discharge behavior between DC 93-500 and RTV 615 DEVOL.

	Table 8e.	1983 Data:	RTV	615, <i>DEV</i>	OL, #88, no Tag off.	vacuum. Į	RTV 615, DEVOL, #88, no vacuum. primed, (needle to plane, cup). Tag off.	to plane, cup).	
SEC	KV	NΩ	_	3+25	25→50	50→75	75→100	100→150	150→200pc
100	0	0							
01	0+5	0							
901	\$	0							
01	5→10	0							
	01	0							
	10+15	2		7					
	15	0							
	15→20	2		_	-				
	20	0							
	20→25	9		S		_			
	22	-							
	25+30	12		10	-				
	30	5		S					
	30+35	23		21		C3			
	35	∞		∞					
20	35→0	7		9	2				

#95, Devolatal. RTV 615, Primed, (3" diam., .040" thick) cvp.	ΣN Description	33
\$# 		3 1
1983 Data: Vacuum potted in Blue cup DC 93-500, Primed, (¾" diam., .040" thick) cup. 1→200pc	Description	<pre><2pc + 7pc <5pc <8 + 12pc <7 + 11,12,17,20pc <9 + 11pc <11pc <11pc <11pc</pre>
	NΩ	8 112 64 247 73
Table 8f. #91,		0 0+5 5 5+10 10 10+15 15+20 20 20 20 25-25 25 30 30+35

THE SECRETARY OF THE PROPERTY OF THE PROPERTY

<3pc + 8pc

<3 + 16pc

50 35-0

- pulses can do harm to insulation down to 0.2 pc if there are enough of them.
- (2) Presumably because the average field strength is high in the plane parallel slab samples when pulses first appear, there are more discharges on the quiescent 100 second plateaus than on the 10 second ramps, even in the high resistivity Uralane. This is opposite from the big bulk FOC witness samples where the average field strength was weak even at the highest applied voltage of -17.5 KV, and discharges came from localized high fields at sharp corners and dielectric interfaces.
- (3) Larger pc content pulses, that is above about 300 pc, are associated with larger voids. The Uralane and Conathane "Imperfects" with intentional pillbox voids began to show pulses with charge content between 500 to 2500 pc at average field strengths of about 250 volts/mil and above. These were definitely associated with the pillbox voids and were absent from all other samples, including the solid sandwich 3-layer samples without pillbox voids in the center layer. These latter ones did start having pulses at 80 volts/mil of less than 50 pc charge content, probably due to imperfections at the layer interfaces, but no discharges above 300 pc appeared all the way to field strengths of 1000 volts/mil. To recall, several thousand picocoulomb pulses were also seen in the front-end sample #3 of the FOC camera investigation. This sample had two large bubbles, the larger of approximate size 1.5 cm x 0.3 cm x 0.5 cm, trapped in the Feldex R-6 potting material. Thus several thousand picocoulomb charge content in single pulses appears to be characteristic of large voids. Table 9 and 10 illustrate this conclusion.
- (4) Partial discharge behavior of silicone rubber "perfect" potting samples (cups) is also good up to 1000 volts/mil tested, with no significant difference evident between DC 93-500 and Devolatilized RTV 615. This was true both for the plane parallel and the needle to plane samples. The latter showed no evidence of growth of electrical trees after several hundred hours of Life test at 30 KV. Electrical treeing under DC applied voltage has only been seen by us in or on thin film insulation.

Table 9. Perfect vs. Imperfect Uralane

				_										
51-100 101-150	۶											_		
														-
26-50	ñ								-	2	-			2
325	5					2	7	2	4	9			4	s
Z.N														
		_	_	_	_			s			-	_	4	6
	5	_	_	_	_						30-3000	30-3000	3-300 4	3-300
VOLTAGE TIME CALIBRATION 2	SEC PC	_	_	_	_						30~3000	30-3000	3-300 4	3-300

		101150 PC 1	101150 151200 PC PC 101150 151200 1512	101-150 151-200 201-250 251-300 PC
26 -50 PC 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S S S S S S S S S S S S S S S S S S S			51-100 101-150 151-200 201-250 25 PC P
101150 151200 201250 PC PC PC PC PC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	151–200 201–250 PC PC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	201-250 PC 1		

ORIGINAL PAGE IS OF POOR QUALITY

ELECTRODES 1,25" DIAM.	NI	5 5 5	0	4		_	=		7 5	2	9-	=	43	13	14 4 3 3 3 1 1 4 +390, 430, 720, 1200 PC	27	41 32 2 1	36 30
ELECTRODES	1	===	0	4	_	2	2		_ ^			-	-	13	4 /	27	4	
5, 1983	MPERFECT EN-11 # 1311 VOLTAGE CALIBRATION	5	3~300	_		•		<u> </u>		0			3→300		35-40 30-3000		3-300	40-0 3-300

JUNE 15, 1983		ELECTR	ELECTRODES 1.25 DIAM	DIAM					
PERFECT EN-11, # 132P	. # 132P	0.040	0.040" THICK, 2.25 DIAM DISC	DIAM DISC	İ				
VOLTAGE	CALIBRATION	Z.N	3-25	26 50	51-100	101-150	151-200	151-200 201-250 251-300	251-300
≩	۶		5		۶	5	5	5	5
0	3-300	0							_
0-10		0							
0		0							
16-20		0							
50		0							-
20-15		М	9						-
25		М	6						
25-30		4	2	-				-	
8		7	7						
30 → 35	30~3000	0							
35	3~300	0							
35	30-3000	=	Ξ						
35-40	30-3000	0							
Ş	30~3000	2			-				
Q	3~300	27	92					-	
40-0	3-300	12	-			-			

Table 10. Perfect versus Imperfect EN-11.

(5) Among the polyurethanes the EN-11 generally showed pulse inception at a somewhat lower voltage and a larger number of pulses than the Uralane 5753LV.

を審奏ではなりている

というない あんこう

A very obvious conclusion is that "low" resistivity (10 11 ohm-cm) resins such as Feldex R-6 are not suitable as high voltage potting compounds: they will be noisy (many partial discharges) and have low breakdown strength. Even as a layer in series with high resistivity insulation material, the use of such resins is questionable.

b) Life Testing of Material Samples

Some Life-testing of the same materials samples as in the previous section was accomplished concentrating mostly on the Urelane and the Conathane. The purpose was to see if there is a correlation between initial P.D. behavior and length of Life. Tables 11 and 12 give the participants and data of this test.

More of the same type of life testing needs to be done. But even from a limited study such as this some conclusions can be drawn:

- (1) The Uralane "perfects" and "imperfects" appear to be more failure resistant from the electric stress point of view than the EN-11's. This is reasonable in that they are different polymers with different molecular make-up.
- (2) It did appear that the EN-11 samples were more likely to vary from batch to batch than the Uralanes, in that both "perfect" EN-11's that failed came from an earlier batch. Standard polymer tests, however, detected no very significant differences in composition.
- (3) Given the same material and geometry, there is a statistical correlation as seen in Table 12 between all the EN-11's that failed and their high sum of initial P.D.'s. This was summed on the ramps and voltage plateaus from data on the short-time initial ramp test profile, pulses being detected between 3 and 300 pc. It is seen in Table 12 that all the samples that had the sum $\sum n_i q_i$ in the several thousand picocoulombs failed, whereas the ones

Table 11. Preliminary Report on Life-testing of Material Samples

• PURPOSE: SELECT THE BETTER MATERIALS.

IS THERE A CORRELATION BETWEEN INITIAL P.D. ACTIVITY AND LIFE?

• PARTICIPANTS:	CONAP	EN-11	URALAN	E 5753 LV
40KV SET I: 200 HRS +	3 PERFECTS	2 IMPERFECTS		2 IMPERFECTS
30 TURN-ONS	2 F'S	2 F'S		0 F'S
40 KV SET II: 260 HRS +	2 PERFECTS	3 IMPERFECTS	3 PERFECTS	3 IMPERFECTS
44 TURN-ONS	0 F'S	2 F'S	O F'S	0 F'S

Table 12. Results on Life-tests Cont.

EN-11 PERFECTS EN-11 IMPERFECTS URALANE PERFECTS URALANE IMPERFECTS

SETS I, II:

2/5 FAILURES	4/5 FAILURES	NONE/3	NONE/5
EN-11'S SAMPLE #	iniqi DURING INITIAL SHORT-TERM RAMP TEST TO 40 KV, CALIBR: 3-300 PC. RAMP + QUIESCENT	SURVIVED	PRESENT STATE
# 106 PERFECT # 117 IMPERFECT # 116 IMPERFECT # 119 IMPERFECT # 110 PERFECT # 120 PERFECT # 111 IMPERFECT # 104 PERFECT	246 PC 2210 PC 3150 PC 3200 PC 2280 PC 310 PC 670 PC 960 PC 660 PC	30 TURN-ONS, 200 HRS 1 TURN-ON, 7 HRS 10 TURN-ONS, 49 HRS 4 TURN-ONS, 10.5 HRS 1 TURN-ON, .08 HRS 44 TURN-ONS, 260 HRS 44 TURN-ONS, 260 HRS 44 TURN-ONS, 260 HRS 2 TURN-ONS, 16 HRS	FAILED ON AV FAILED AT 40 KV FAILED AT 40 KV FAILED ON AV CONTINUES CONTINUES

with much less P.D.'s did not fail. (The n_i = number of pulses at a given charge content q_i picocoulombs.) However, the correlation is seen to be statistical and not on a one on one individual basis. Individual variations in life test results are well known. [16, 17]. as stated for example by G.C. Stone: "The time for breakdown of identical samples of a solid insulation tested at a fixed high voltage can vary over a range of 10:1.

- (4) The importance of the sum of total charge transfer in corona degradation as an important quantity was pointed out by Burnham [18]. On our new ND 65 we now have the capability to calculate the sum $\Sigma n_i q_i$ immediately after each data acquisition, as will be seen below in the capacitor section, on some of the more recent measurements.
- (5) Among the failures, 3 out of 5 occurred during the act of voltage turn-on, even though this was a very benign 10KV/5 second turn-on. For example, a test-object that sat with-out problem for 8 hours at 40 kv one day, failed during the next day's turn-on as the voltage passed the 30 kv mark. Failures during a turn-on after several months of satisfactory operation have occurred in orbit.
- (6) For a closer look at an individual samples' degradation, partial discharge testing should be interspersed during life testing to show progressive damage or, in other words, trend studies should be done. Table 13 shows sample #110 Perfect of EN-11 before and after 260 hours at 40 kv and 44 turn-ons.
- c) Thermomechanical and Adhesion Considerations.

It must be remembered that the above Life-tests were carried out at very high average field strengths namely 1000 volts/mil. Electrically, both the EN-11 and the Uralane 5753 proved to be satisfactory, although the Uralane seemed somewhat better. The question arises as to what the *failure mode* of these polymers then really is under low or moderate D.C. electrical fields as in a flight high voltage assembly. The beginning of a problem could be due to thermomechanical and/or bad adhesion stresses which can start small cracks in the polymers. The thermal coefficients of expansion or contraction of the polymers are 20 times those of

Table 13. Trend Study

MAY 9, 1983 PERFECT EN-11 # 110P	72.	2	CALIBRAT	CALIBRATION 3 -300PC	FC 51 - 100	101-150		EN 3-25	26→50	51-100
	SEC	;	, £	3 2	<u></u>			5	გ	5
0	8	0					0			
0-10	~20	0					0			
9	8	0					0			
10 20	~20	0					0			
20	8	0					0			
20-25	~10	2	S				7	7		
25	8	-	-				Ю	9		
25~30	~10	_			-		_		_	
8		0					_	-		
30~35		რ	-	-	_		2	-	_	
35		-	_				-	_		
35 - 40		_			_		-		_	
9		9	9				_	_		
40 - 45		7	_			_	က	7		-
45		24	23			_	4	=	က	
45-50		4	e		-		4	_	7	_
<u> </u>		49	48	-			Ξ	80	_	7

		26.460 61
		3070
SEPT 8, 1983 AFTER LIFETEST	AT 40KV, OF 260 HRS & 44 TURN-ONS	ACT I STATE II AND II SANGE II SANGE II SANGE II SANGE II SANGE II SANGE III

& 44 TURN-ONS								
VOLTAGE TIME	NZ.	3~25	26 ~50	51-100	101~150	151~200	51-100 101-150 151-200 201-250 251-300	251-300
		۶	8	5	۶	ج	ج	٤
	0							
	0							
	•							
10-20 -20	œ	80						
	0							
	-		_					
	4	4						
	-		-					
8	2	7						
30-35	٣	7	-					
35	18	18						
35~40	=	9	_					
\$	40	38		-		_		
40-45	6	S	_	2	_			
45	5.1	46	2	2		-		
45 -50	17	13	7	-		_		
20	237	226	^	-	2			
		,			_	_		

And the state of the second of

the inorganic circuit components embedded within them. Small cracks once begun, will grow with relatively small stress subsequently. The partial discharges within these cracks also serve to enlarge them further, this being a much faster process on A.C. applied voltage however than on D.C. Finally this leads to an electrode to electrode catastrophic breakdown. Knowledge of adhesive properties and of tear strength and crack propagation speed is therefore as important to the proper choice of potting materials as electrical properties. To this end

- (1) we are enclosing some adhesion data measured during the past few years. Table 14.
- (2) we point out important Materials work presently being done at G.E.'s Space Technology Center and elsewhere on elastic, thermomechanical and cracking properties [19, 20]. It appears that Uralane cracks grow faster than cracks in DC 93-500.

かんしょう かんし からないないないないかい これがないのかい

- (3) we have begun thermal shock cycles on small cups filled with the different resins, a heavy stell hexnut having been buried in each resin cup. Soft X-rays from a Lixiscope and power supply by Dr. Lo I. Yin and Mr. Arthur Ruitberg respectively will serve to reveal cracking in the opaque resins.
- (4) Thermomechanical stress analysis should be carried out when potting designs are planned.

 The less confinement of a potting mass the less the mechanical stresses will finally be.

 Freedom to expand or contract must be given to the polymer, and temperature excursions, both during cure and during service of the cured polymer should be minimized.

Other possible potting materials than in this study have been evaluated for high voltage in Space use by other authors [21, 22, 23]. The ones named below fulfill a criterion of low viscosity at ambient temperature needed for impregnating miniwound high voltage transformer coils. These, generally, then require a higher cure temperature (more than 50°C). Conap EN-2521. Stycast 2651, 3M EC 2216. RTV 615 are such low viscosity resins. Work with one or another of these to impregnate coils for high voltage transformers and explore P.D. testing techniques, both D.C. and A.C., is planned by us for the near future.

Table 14. Adhesion Test Results.

- I. Lap Shear Strength of Shell Epon 828/Miller Stephenson V-40. (Each average is based on six samples:)
 - (A) Adherent: 60% tin 40% lead solder, electro-plated on Beryllium Copper.

Adhesive Thickness: 0.019 inches ± .002

Surface Treatment	Standard Deviation psi	Average Strength psi
As received	± 100	700
200-proof Ethanol spray	± 80	900
Ultrasonic clean, with Freon TF	± 230	1000
Ultrasonic clean Freon, paper towel rub, ultrasonic clean	± 250	1180
Vapor degrease Trichloroethane, 74°C.	± 260	1170
Vapor degrease Trichloroethylene, 84°C.	± 240	1220
Ethanol sprayed, SiC 320 paper by hand, Ethanol sprayed	± 50	1200
Ultrasonic clean "sand blasted" with glass balls, ultrasonic clean Freon TF	± 210	1360
Trichloroethylene vapor degreased, "sand blasted" with glass balls, vapor degreased	± 230	1810
Ultrasonic clean Freon, "sand blasted" with Black Beauty grit, ultrasonically cleaned	± 120	1950

(B) Adherent: Glass Epoxy Board

Adhesive Thickness: 0.019 inches ± .002

Surface Treatment	Standard Deviation psi	Average Strength psi
Vapor Degrease with Trich- loroethylene	± 240	1350
Ultrasonic clean, Freon TF	± 200	1900

Surface T	Treatment	Standard Deviation psi	Average Strength psi
200-proo	f Ethanol Spray	± 260	2000
ethyler	egrease with trichloro- ne, sand blast with glass vapor degrease	± 80	1380
	c clean Freon TF, sand with glass balls, ultrasonic	± 240	1430
(C)	Adherent: Porcelain		
	Adhesive Thickness:	0.019 inches ± .002	
	Scrubbed with Bon A dried, vapor degrees	mi, rinsed with distilled w sed trichloroethane	rater. > 1400
	Porcelain broke failure.	e on all samples before ad	hesion
(D)	Adherent: Ferrite		
	Adhesive Thickness:	0.019 inches ± .002	
	Ultrasonic clean with	Freon TF	> 1130
	Ferrite broke of failure.	on all samples before adhe	sion
II. Vario	ation of Lap Shear Stren	gth with Glue Line Thick	ness
Adh	esive: Epon 828/Miller	Stephenson V-40	
Adh	erent: Glass Epoxy Boa	rd	
	of Glue Line . Inches	Standard Deviation psi	Lap Shear Strength • i
.0	08"	± 300	2450
.0	19"	± 100	1900
.0	30"	± 290	1710
Adh	erent: 60-40 Solder on	Beryllium Copper	
Surf	ace Prep: Ultrasonic cle	an, Black Beauty Grit, Ult	rasonie elean
.0	10"	± 50	2100
.0	19"	± 120	1950

Adherent: 60-40 Solder on Beryllium Copper

Surface Prep: Ultrasonic, Paper Towel Rub, Ultrasonic clean

.010" ± 100 1460

.019" ± 250 1180

III: Lap Shear Strength of Sylgard 184. Primed with Sylgard Primer.

(A) Adherent: Solder

Adhesive Thickness: 0.010 inches ± .002

Surface Treatment	Standard	Deviation psi	Lap Shear Strength psi
Vapor degreased Trichlorethane, primed with Sylgard primer	±	75	320
Vapor degreased Trichloroethane, grit blast Black Beauty, vapor degreased again, primed	.	60	495
Same as above, 0.020" glue line	±	35	470

(B) Adherent: Glass Epoxy Board

Adhesive Thickness: 0.010 ± .002

Surface Treatment	Standard	Deviation psi	Lap Shear Strength psi
Vapor degreased Trichloro- ethane, primed Sylgard primer	±	45	315
Same as above and grit blast- ed Black Beauty grit	±	20	565

1V: Lap Shear Strength of Thiokol Solithane 113, Formulation 4: 100 gm resin, 100 gm hardener.

(A) Adherent: 60-40 Solder, Electro-plated on Beryllium Copper

Adhesive Thickness: 0.010 inches ± .002

Surface Treatment	Standard Deviation psi	Lap Shear Strength psi
Ultrasonic Clean with Freon TF	± 25	90
Vapor Degrease Trichloroethane	± 15	95

Surface Treatment	Standard	Deviation	Lap Shear Strength psi
Alcohol Spray	±	5	110
Vapor degrease with Trichloro- ethane, sand blast with Black Beauty grit, vapor degrease		15	160
Vapor degrease with Trichloro- ethane, prime with thin coat of Epon 828/V-40. Primer used	±	65	355
(B) Adherent: Glass Epos	ky Board		
Adhesive Thickness:	0.010 inch	es ± .002	
Vapor degrease with Trichloro- ethane, grit blast Black Beauty grit, vapor degrease	±	30	215
Vapor degrease with Trichloro- ethane	±	40	220
(C) Adherent: Ferrite			
Adhesive Thickness:	0.010 inch	es ± .002	
Ultrasonic clean, hand sanded on 400 grit SiC paper. Ultra- sonic clean with France TF (Johnson)		15	60
Repeat above (Clatterbuck)	±	20	60
Ultrasonic clean only	±	20	100
(D) Adherent: Porcelain			
Adhesive Thickness:	0.010 inch	es ± .002	
Data very poor despite grease from the daimo			
Vapor degreased, Trichloro- ethane	±	30	30
Vapor degreased, Trichloro- ethane, Bon Ami scrubbed, washed, dried, vapor degrease		65	75

Surface Treatment Standard Deviation Lap Shear Strength psi

Ultrasonic clean Freon. Bon Ami scrubbed, washed, dried, ultrasonic clean Freon ± 50

80

V: Lap Shear Strength of Thiokol Solithane, Formulation #11

Thiokol C113 Resin: 100g, C113-300 hardner: 44g, TIPA: 6g. All samples ultrasonically cleaned with Freon-TF.

	Adherent Surface Treatment	Adhesive Thickness Inches	Standard Deviation psi	Lap Shear Strength psi
i.	No primer used: 60-40 Solder on Be-Cu	0.010	± 96	576
II.	Chemlock 218 Primer: Thinned 50%-50% with MIBK			
	60-40 Solde, on Be-Cu	0.010	± 152	850
	Sandblasted Glass Balls, 60-40 Solder on Be-Cu	0.010	± 195	1070
	Porcelain	0.010	± 88	416
	Etched Teflon	0.010	± 23	292
111.	Epon 828 Epc y Primer: Thi med 50%- 0% with Methyr Alcohol			
	Etcned Teflon	0.010	± 12	365
		0.020	± 10	360
	Porcelain	0.020	± 45	590
	60-40 Solder on Be-Cu	0.010	± 70	780
	Sandblasted 60-40 Solder on Be-Cu	0.010	± 130	860

VI: Lap Shear Strength of Thiokol Solithane #6

Thiokol C113 Resin 100g, Thiokol C113-300 hardner 120g. All samples were ultrasonically cleaned with Freon TF.

Adherent: 60-40 Solder, Plated on Beryllium Copper.

Adherent Surface Treatment	Adhesive Thickness Inches	Standard Deviation psi	Lap Shear Strength psi
Woolsey Metalast 919/920	0.020	± 20	130 Cohesive Failure
Woolsey Metalast	0.010	± 28	165 Cohesive Failure
Adherent: Itched Teflon			
Woolsey Metalast 919/920 Primer	0.020	± 4	132 Cohesive Failure
Woolsey Metalast 919/920 Primer	0.010	± 10	131 Cohesive Failure
Adherent: Sandblasted Gl	ass-Epoxy Board		
Woolsey Metalast 919/920	0.020	± 14	81 Cohesive Failure
Woolsey Metalast 919/920 Primer	0.010	± 15	151 Cohesive Failure

VII: FOC Adhesion Lap Shear Tests (Courtesy C. Clatterbuck, Code 313, GSFC) 3 Samples of Each Variation.

Adhesive Between Substrate Coupons	Lap Shear Adhesive Strength psi	Average psi
Kovar to Kovar Substrate		
Uralane 5753 LV, no primer	155 108	132
Uralane + PR-1 primer	397 734 424	517
Uralane + PR-1 + upraded the Kovar substrate with 320 A10 paper	424 346 361	377
Scotchweld 2216, filled with 60% silver flakes by weight	651 618 565	611

Adhesive Between Substrate Coupons	Lap Shear Adhesive Strength psi	Average psi
Scotchweld 2216, filled with 80% silver flakes by weight	543 536 563	547
Epon 828/Versamid 140, filled with 15% conductive carbon by weight	520 484 625	543
Stycast 3050 with 5% Cabosil by weight	766 526 878	723
Glass to Glass Substrate		
Uralane 5753 LV, no primer	212 284 186	227
Uralane + PR-1 primer	528 321 493	447
Scotchweld 2216 with 60% silver flakes by weight	891 577 1113	860
Scotchweld 2216 with 80% silver flakes by weight	282 253 418	318
Epon 828/Versamid 140, filled with 15% conductive carbon by weight	341 497 184	341
Stycast 3050 with 5% cabosil by weight	896 885 734	832
DC-93-500 Silicone rubber with Q3-6060 primer	655 582 450	562

IV. Capacitor D.C. Partial Discharge Data, and Life Tests

a) Summary of earlier work

Much work has been done by us during the last several years on D.C. partial discharge measurements of commercially available high voltage capacitors. This has revealed great differences in both numbers and charge content of pulses among different kinds of high voltage capacitors suitable for electronic high voltage power supplies for Space flight. As a summary Table 15 shows some typical D.C. P.D. behavior. Even the same type such as solid ceramic disc barium titanate capacitors by different manufacturers vary greatly between the manufacturers.

Some salient points illustrated by Table 15 are: First, many more pulses and hence information as to the presence of discharge sites inside the capacitors appears on the 10 second ramps in these devices of low $\partial/\epsilon \mathcal{E}_{o}$ than on the 100 second quiescent plateaus (∂ = conductivity, ϵ = relative permittivity or dielectric constant, \mathcal{E}_{o} = permittivity of empty space). Second, inception of discharges is considerably below the rated voltage stated by the manufacturer. Electronics designers are perhaps not aware that they are using the high voltage D.C. capacitors at voltages where partial discharges indeed occur. To obtain length of service estimates, one must additionally do Life testing, interspersed with D.C. P.D. tests which should give trend data. An earlier study of this type for single disc cerumic capacitors has been published elsewhere by us [12]. This earlier study was carried out for 1000 hours at 85°C and at constant D.C. voltage of 1.5 times rated. It showed that the several batches of capacitors with high amounts of initial P.D.'s did not necessarily all fail on Life testing, but the ones that did fail all came from high initial P.D. batches.

Table 15. D.C. Partial Discharge Histograms of various Types of D.C. High Voltage Commercial Capacitors.

Mylar spiral Wrap, Flat, Encapsulated S/N 13; 10,000 pf; 6300 v rated Calibration: 30 - 6000 pc Description	Most < 570+852,945,1832 pc 6 pc Most < 1151 + 15 pulses to 3053 pc Most < 39 + 61 pc Maxwellian continuous to 5424 pc Most < 17 pc	AC CIV: 275 volts rms	Stacked Ceramic MultiLayer 1000 pf, 5000 v rated Calibration: 10 - 3000 pc	Appl. KV z.N Description	0 0 $25 ext{ 8 Most} < 71 ext{ pc}$	s.	5	3.75 0 5.75 - 5 172 Most < 1104+ 8 pulses to 2011 pc 5 1 44 pc
S Z.	0 167 Most 3 6 pc 882 Most 24 Most 1333 Maxv 21 Most	; CIV: 2		Appl	0 0 - 1.25 1 25	1.25	2.5 -	3.75 3.75 - 5 5
Micapaper Spiral Wrap, Impregnated, Flat S/N 19; 10,000 pf; 8000 v rated Calibration: 3 - 600 pc	od 99		Solid Ceramic Disc, Manufacturer C 1000 pf, 4000 v rated Calibration: 2 - 460 pc	Description	Most < 400 pc	Maxwellian conti-	Most < 54 +215+282 pc	
capaper Spiral Wra Impregnated, Flat 9; 10,000 pf; 800C dibration: 3 - 600 p	Most < 5 pc Most < 34 pc Most < 19 + (6 pc · 2200 v rms	Cerami 1000 Calibra	N	21	203	10	
Micapaper Spiral Wrap, Impregnated, Flat S/N 19; 10,000 pf; 8000 v Calibration: 3 - 600 pc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 6 pc - AC CIV: 2200	Solid	Appl. KV	0-2	2-4	4	
S A		AC	Solid Ceramic Disc, Manuf. A 1000 pf; 10,000 v rated Calibration: 2 - 400 pc	Description	Most < 4.5 pc Most < 7 pc Most < 10 6 pc	Most < 6.6 pc	AC CIV: 4500 v rms	
volts	ν 4 ο «		mic Di f; 16,0 ttion: 2	N o	m / o	N M	AC CIV	
Applied dc volts KV	0 - 2 - 2 - 4 + 4 - 6 - 8	30	Solid Cera 1000 p Calibra	Appl. KV	0-5	10	•	

Considerable and prolonged experience was also obtained with thin film capacitors: Mylar spiral wrap, cylindrical, hollow, airfilled, 10,000pf, 8 KV; Mylar spiral wrap, flat, airfilled, encapsulated, *not* impregnated, 10,000pf, 8 KV. Results were

(1) As can already be seen in Table 15, these have enormous amounts of corona or partial discharge on ramping to rated voltage. Without reproducing all the details, two sets of data suffice to show contrast to solid reconstituted, resin-impregnated mica capacitors:

Tubular, hollow #12 Mylar Spiral Wrap
10,000pf, 8000 v rated
Calibrat: 30→6000pc

Impregnated, Solid, Micapaper Spiral Wrap
10,000pf, 8000 v rated
Calibrat: 3→600pc

Applied D.C. volts:	ΣN	Description	ΣΝ	Description
0	0		0	
0→2KV	26	Most <100pc +311pc	0	
2KV	0		0	
2→4KV	303	Most <593pc	4	Most <5pc
4KV	8	Most <83pc	0	
4→6KV	972	Most <1186 + 1427, 1667, 2296pc	8	Most <34pc
6KV	3	10, 20, 417pc	0	
6→8KV	1443	Most <1691pc + 11 pulses to 3686pc	14	<19 + 66pc
8KV	3	Most <141pc	1	6pc

A.C. Corona Inc. V: 1000 V rms.

A.C. Inc. V. 2200 V rms.

Mylar spiral wrap, hollow, airfilled:

10,000 pf, 8 KV rated
$$0\rightarrow 8$$
KV total ramp $\Sigma n_i q_i = 537$ 10 pc

Mica spiral wrap, solid, resin impregnated:

10,000 pf, 8 KV rated
$$0\rightarrow 8$$
KV total ramp $\Sigma n_i q_i = 434$ pc

The above is measured in ambient air, and after having the aluminum print electrodes on the Mylar "cleared" or evaporated at punctures through the film or at flash-overs. This corona is to be expected since the aluminum print pattern is surrounded by gas and the edges of the print are sharp and electric fields are high there. The capacitor survives this corona for very long due to the self-clearing feature, and due to the added

reliability derived from the electrode print pattern being several condensors in series within the single capacitor piece of hardware; but some treeing damages has been seen upon dissection.

- (2) After time in vacuum, there are reduced pressures *inside* the hollow capacitors. We have found that in about 20% of parts, end to end total discharges develop. This is due to carciess construction of the end electrodes: Whenever there is an unobstructed, gaseous, low pressure path from metal at one end cap to metal at the other end cap the internal arcs will happen at certain reduced pressures according to Paschen's curves. These internal arcs happen several times/minute for a while, then stop, then start again after a half hour or so. The capacitor survives this for a long time, but the voltage output has large transients on it, of course. Initial vacuum bake-out at 70°C appears to help to prevent the internal arcing in vacuum.
- (3) A third phenomenon, not at all understood, also occured in vacuum:

A few of these capacitors arced from the *outside* negative terminal to ground at good vacuum, at a frequency of one or two times per week. Again, the capacitors survived, but secondary arcs accompanying the outside arc from the capacitors destroyed diodes, IC's, transistors in low voltage parts of the circuit.

In short, whereas such thin-film, hollow capacitors might be all right in atmospheric pressure uses, they are not suitable for use in the vacuum of Space. Solid capacitors, such as resin-impregnated, reconstituted mica and properly elected ceramic capacitors must be used. The resin-impregnated mica capacitors have a very small amount of partial discharge on ramping to rated voltage, as seen in Table 15.

Some of the most recent capacitor work follows:

b) 5-disc back-to-back ceramic capacitor module

Manufacturer H's ceramic (BaTiO₂) 5-disc back-to-back capacitor modules were P.D.

tested to compare them to 5-unit capacitor modules of reconstituted, resin-impregnated mica by manufacturer U. Neither type here was totally satisfactory in that

- (1) H's modules showed problems with the two outermost capacitors at each end. These exhibited a run-away corona at only 20% above rated voltage on the quiescent plateau. In fact, after turning the applied voltage down and then up again to only ½V_R, the end capacitors now showed the clearest symptom of damage, namely preferred peaks of charge content of pulses on the P.D. histograms. This indicates localized concentrations of discharges that would very quickly lead to catastrophic failure. Figure 12 shows reproductions of a preferred peak histogram and also of the more usual quasi-Maxwell...an distribution type of histogram.
- (2) In the reconstituted mica module by manufacturer U the capacitors were almost discharge-free on the voltage plateau which is good. However, on the voltage ramps above ${}^4\!V_R$ there were several discharges in the 1000pc range which usually indicates some large voids. The outcome of this study was that manufacturer H corrected the end terminations, and the new modules will be tested again.

Tables 16a through 17d gives the original data, as well as Figures 13 and 14.

c) Multilayer ceramic (BaTiO₃) capacitor (manufacturer K,) investigation

Due to their volumetric "efficiency", meaning small size, multilayer ceramic capacitors in the voltage range to 5 KV D.C., have recently begun to appeal to designers of high voltage power supplies. Some P.D. investigations were done on 10,000pf, 5 KV rated multilayers to see first of all whether the D.C. ramp test could distinguish between samples that had small cracks as revealed by the ultrasonic SLAM tests and those that had no cracks. Indeed the voltage at which the first few counts appeared upon ramping was at 1.9 and 2.0 KV for the cracked ones versus 2.3 and 2.8 KV for the ones with no cracks. Also the number of pulses on the 1.25 to 2.5 KV ramp was more for the cracked ones than the intact samples. How-

ORIGINAL PAGE IS OF POOR QUALITY

	4		-4		
+ 62	300.000	+ 62		300.000	
CF	RIEN	CF	1	RIEN	distribution.
1 AC = 1		1 AC = 1			w: Ordinary
-	1	_			Belov
2 QW	460	1 QW	1	401 0.499934	Above: "Preferred-peak" distribution. Below: Ordinary distribution.
GF	1	GF			Above: "Preferre
	TOTAL			TOTAL	Figure 12.
21-MAR-84		20-NO 4-83 - -			

Table 16a. Manufacturer H: 5 Capacitor Module. (Each 1000pf, 15 KV)

15KV 102M						
C ₂	C ₃	C ₄	C ₅			
		·····				

ECD Capacitance Meter Model 100

 $C_1 = 835 \pm 5pf (850)$

 $C_2 = 930 \pm 5 pf (940)$

 $C_3 = 975 \pm 5 pf (990)$

 $C_4 = 920 \pm 5 pf (940)$

 $C_5 = 870 \pm 5 \text{pf}$ (865)

ORIGINAL PARE IT

Table 16b. Manufacturer H: 5 Capacitor Module. (Each 1000pf, 15KV)

					•			-		
c_1				2.6→30	<u> </u>					$\Sigma n_i q_i$
KV	ΣΝ	2.6→25	→50	→ 75	→100	→125	→150	→175pc		Σрс
0→3.75	0									
(∼15sec) 3.75	0									
(100sec)			Starts	at ~4	.5KV					
3.75→7.5 7.5	70 39	46 33	11 4	6 1	2	3	1		+149pc +119pc	Σ2051 Σ583
				26→300	One					
		26→2501	•	20 - 300	<u> </u>					
	•		рс						.246	D((42)
7.5→11.25	8	7							+265pc	Σ(642)
				2.6→300)pc					
11.25 11.25→15	30 229	27 192	3 24	5	2	1	0	2	+214,	Σ388 Σ4151
15	63	58	4	v	_	•	•	•	+283pc +? +52pc	Σ685
13	03	20			0.				+32pc	2003
			:	26→300	<u>Opc</u>					
15→18.75	229!	214	9	3	1(96	lpc)			+1180, 2976pc	Σ29,871
								peak	at 180pc	
			3	2.6→300)pc					
18.75	Bursts!									
(80sec)	2803	2202	345	115	53 12	22 15	12 6	5 10	+301pc	Σ60,670
								neak	+306pc +? at 86pc	
Mar Amelia			-							
Up Again: KV	ΣΝ	2.6→25	→50	→75	→200	→225	→250	→275pc	:	
0→3.75	0									
3.75 3.75→7.5	0 102	78	14	2	1		4	3	+289pc +?	
7.5	368	120	89	103	8	2	7	11	-	Σ21,305
		DAMAG	ED.							

ORIGINAL TEAT OF OF FOUR CONTROL

Table 16c. Manufacturer H: 5 Capacitor Module. (Each 1000pf, 15KV)

c_2				2.6→3	00pc				
KV	ΣΝ	2.6→25	→50	→ 75	→100	→150	→175pc		Σρς
0→3.75 3.75	0		Ç.	-	~ (1/1/				
3.75→7.5 7.5 7.5→11.25 11.5 11.25→15 15	9 2 30 18 95 90	5 2 25 18 76 88	1 2 13 2	arts at 1 3	2 0	1	2	+295pc	Σ301 Σ15.2 Σ518 Σ109 Σ1896 Σ559
				26→30	000pc				
15→18.75	2!	37.9	76.9						Σ114.8
				2.6→3	00pc				
18.75 18.75→0	198 24	191 22	7 2						Σ1476 Σ321
C ₃				2.6→3	00pc				
0→3.75 3.75	0 0								
3.75→7.75	58	36	9	Starts	at ~4K	.V 6	i	+163pc	Σ2009
7.5 7.5→11.25 11.25	16 70 63	16 52 63	10	3	3	2	•	+105pc	Σ86 Σ1465 Σ247
11.25→15 15	148 252	131 252	8 1	6	3			peaks at 22pc	
				26→30	00рс				
15→18.75	7!	7 (to	121.9p	oc)					Σ(487)
				2.6→30	Орс				
18.75 615 18.75→0	615 73	608 46	7 13	5	5	3		peaks at 17.8pc	Σ4738 Σ1975

3... o÷ 7

	Table 16d.	Manufacturer H.	5 Capacitor	Module.	(Each	1000pf.	15KV)
--	------------	-----------------	-------------	---------	-------	---------	-------

C4					2.6→300	Opr				
KV	ΣΝ	2.6→25	→50	→75	→100	→125	→150	→175pc		Σρο
0→3.75	0									
3.75	0			_						
			,	Starts	at 5KV	√ ,	•		. 300	£1003
3.75→7.5 7.5	23	12	6			<u> </u>	2		+200pc	Σ1083 Σ8
7.5→11.25	2 59	2 46	7	1	1	3			+204pc	Σ1374
11.25	33	33	,	,	•	3			1204//0	Σ222
11.25→15	145	132	6	,	3		1		+302pc +?	Σ2075
15	217	208	3	2 5 5	•		•		+76.6pc	Σ2044
15→18.75	276	263	7	5					+106pc	Σ2886
18.75	671	643	17	11					•	Σ6291
18.75→0	57	37	10	6	3				+100.6pc	Σ1421
C ₅										
0→3.75	0									
3.75	0									
				Starts	s at ~71	ΚV				
3.75→7.5	2									$\Sigma 12.7$
7.5	10	8								Σ147
7.5 → 11.25	116	102	10	2	1				+100.6pc	Σ1631
11.25	85	79	4	1	_	_	_			Σ996
11.25→15	277	229	27	9	5 2	2	3	1	+203pc	Σ494+
15	564	538	16	6	2	1			+135pc	Σ5795
Down Aga Up Again	in									
15	520	484	23	10	2				+81.7pc	Σ5758
STOP, dor	i't go	to 18.75k	V							
15→0	13	12	1							Σ117

Table 17a: Manufacturer U: 5 Capacitor Module. (Each 1000pf, i0KV)
Resin Impregnated Mica

 $C_{12} = 1040 \pm 20 pf$

 $C_{23} = 1010 \pm 20 \text{pf}$

 $C_{34} = 970 \pm 20 pf$

 $C_{45} = 1040 \pm 20 pf$

 $C_{56} = 1035 \pm 20 \text{pf}$

Table 17b. Manufacturer U: 5 Capacitor Module Each 1000pf, 10KV

c_{12}				2	.6→300p	oc_				
KV	ΣΝ	2.6→25	→50	→ 75	→100	→125	→150	→175pc		Σpc
0 0→2.5	0 1 0	5.6pc								Σ5
2.5 2.5→5	16	13	2						+66.4	Σ236
5 5→7.5 7.5 7.5 -10		41 6.5pc 57	2	1	1	1			+156,165	Σ394 Σ6.5 Σ1490
10 10→12.5 12.5 12.5→0	2 90 5 66	1 72 3 55	8 1 7	2	5 1	3	(116pc	highest)	+243pc +64pc +56.2pc +142,307pc	Σ84.8 Σ1794 Σ137 Σ1361
				7						
C ₂₃										
0 0→2.5	0 2 0	1		Starts	at 2.4	KV			+71pc	Σ74.5
2.5 2.5→5	37	27	3	1	i	2			+175,180 +240pc	Σ1340
5 5→7.5 7.5	2 72 0	59	1 4	1	1 2	3	1		+150,169pc	Σ116.9 Σ1682
7.5→10	96	74	8	3	4	3	1		+190,282 +290 +?	Σ2636
10	2	2								Σ13.4
		26→250	рс		26→30	000pc				
10→12.5	23	17			2 42	200ma			+421,472 +577pc	Σ4198
12.5	4	3			2.6→3	оорс			+60pc	Σ97
		26→250	рс		26→3	000pc				
2.5→0	26	23							+259,268 +322pc	Σ2609
					92					

Table 17c. Manufacturer U: 5 Capacitor Module Each 1000pf, 10KV

C ₃₄			2.6→3	00pc			
KV	ΣΝ	2.6→25	→50	→ 75	→100pc		Σpc
0→2.5 2.5	0 0		£44-	20	VV		
2.5→5	18	12	4	at 2.8	OK V	+89,267pc +?	Σ584
5 5→7.5 7.5	0 62 4	48	9	1	2	+120.7,255.3pc +? +107.5pc	Σ1394 Σ126
			26→30	000pc			
7.5→10	12	43	2 at	53.59.6	55,77,80,104	,107,170,184,319pc	Σ1428
			2.6→3	00pc			
10	5	2	2			+108pc	Σ177
		26→208	рс	<u>26→3</u>	3000pc		
10→12.5	23	. 20				2 at 350pc,514pc	Σ3240
				2.6 -	+300pc		
12.5	25	19	4			+94.3,216pc	Σ543
		26→182	pc	26→3	3000pc		
12.5→0		24				+340pc	Σ2475

OF the

Table 17d. Manufacturer U: 5 Capacitor Module Each 1000pf, 10KV

C45					
KV	ΣΝ	2.6→25	→50 →75 →100pc 6 4 2		Σρς
0→2.5 2.5 2.5→5 5	0 0 0 0		2.6→300pc		
5→7.5 7.5	3	2	Starts at 6KV	+115.9pc	Σ158
7.5→10 10	16 1	14 14	1	+184.8pc	Σ4 Σ332 Σ4
10→12.5 12.5	23	21	1 26→3000pc	+242.4pc	Σ456 Σ7
12.5→0		6<	178pc	+592pc	Σ1290

Table 17e. Manufacturer U: 5 Capacitor Module Each 1000pf, 10KV

C ₅₆				2.6→.	300pc			
KV	ΣΝ	2.6→25	→50	→75	→100	→125pc		Σpc
0→2.5 2.5	0 0			.				
2.5→5 2.5→5 5	26 0	25	1	Starts	at 3.51	K V		Σ254
5→7.5 7.5	97 1	84 1	7	2	1	1	+189,273.9pc	Σ1694 Σ4
		→200pc		26→30	000pc			
7.5→10	11	6					+364,376,396,481 +1366pc	Σ3594
				2.6→3	00рс			
10	1	1						Σ9
		→200pc		26→30	000pc			
10→12.5	24	15					+235,280,328,382 +391,643,1012,1072 +1117pc	Σ6868
				2.6→3	00pc		+1117pc	
12.5	6	5					+77pc	Σ108
		→200pc		<u>26→30</u>	000pc			
12.5→0	30	26					+202,232,262,370, +685pc	Σ3795

Figure 13. Partial Discharges as Function of Voltage.

Figure 14. Partial Discharges as Function of Voltage.

ever, on the 3.75- 5 KV ramp the number and charge content of all the capacitors became so high that it appeared that there was a serious generic problem with all these capacitors irregardless of small cracks. Voids in the dielectric and excessive field strengths at the ends or edges of the interleaving capacitor plates seemed to be the problem. This is further born out by the fact that the worst partial discharge was experienced with two capacitors from Task 1-B-2-1 (my S/N #7 and #8) which were made with #325 mesh screen electrodes, between layers. This gave sharper edge definition than the usual #280 mesh and made edge fields stronger and partial discharges worse.

Trend studies in vacuum of the uncoated ones #2 and #4 showed that the improvement with time in vacuum was not real, but only apparent. Due to the usual polarization, space charge injection and ferroelectric nature of these BaTiO₃ ceramics, repeated tests in vacuum carried out with D.C. voltage applied in the same polarity give successively fewer P.D. pulses. However, as soon as the polarity was reversed on these capacitors in vacuum there was a reoccurrence of a tremendous number and charge content of pulses.

Doubling of layer thickness of the ceramic resulted in fewer counts and smaller charge content, but the voltage at which counts first appeared was still around 2.5 KV, the same as the original thin layer ones without cracks. Apparently the most significant origin of pulses is at and near the electrode edges where layer thickness does not greatly influence the field strength; mostly edge sharpness and interactions seem to create the pulses.

Multilayer ceramic capacitors are given a misleading rating by the manufacturers in that they all consistently break down at about 1.3 times V_R . Manufacturers' catalogues suggest that DWV (Dielectric Withstand Voltage) be tested at 1.2 V_R for these multilayers rather than at 2.5 V_R suggested for the single ceramic disc capacitors. The reliability margin is thus compromised by overrating by the manufacturers. The P.D. histograms on the ramps, however,

show clearly that the P.D. pulses are excessive between $\frac{1}{2}V_R - V_R$ and are reasonable only from $0 - \frac{1}{2}V_R$, where they are comparable to some single disc behavior from $V_R - \frac{3}{2}V_R$.

Life testing in vacuum of several manufacturers' multilayer stacked ceramic capacitors is now proceeding. These samples were P.D. tested before the Life test start and will be repeated after the 6 months' Life Test in vacuum at rated and slightly above-rated voltages. This should give some degree of confidence as to whether it is safe to use these capacitors near their rated voltage.

Tables 18a through 18v give the original data obtained in this investigation.

Table 19a-e reproduces some data excerpts of post-burn-in P.D. measurements on some single disc capacitors, BaTiO₃, 1000pf, X5R, 10 KV. These have remarkably little partial discharge, even on polarity reversal. The units that "failed" visual inspection initially (#29) or visual inspection after burn-in (#'s 4, 7, 20, 14) were also measured, interspersed with the "passed" units. The visual defects were cracks in the epoxy coating. These cracked coating units clearly had significantly more partial discharge activity, especially on the ramps. On this basis two units that passed all the customary post-burn-in tests such as Insulation Resistance measurement at 500 volts, short-term DWV, low voltage capacitance and dissipation factor measurements and visual inspection, should also be rejected, namely #'s 25 and 26.

Another set of capacitors were 1000pf, X5R, 20 KV BaTiO₃ discs. Table 20a-f shows some of their post-burn-in P.D. data. The term "pass" or "fail" is the screening contractor's verdict based on the tests named in the paragraph above or on initial pre-burn-in P.D. test. Again, S/N #1 which was failed on the basis of visible crack in the epoxy coating had a much more active P.D. histogram than #'s 2, 30, 5, 11, 16 and so on, that passed. Therefore, on the basis of the P.D.'s after burn-in #'s 14, 17, 8 and 15 also should be rejected although

Table 18a. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

My numbers:	Mar	n. K numbers
#1	1)	280 <u>hand-soldered leads</u> (Pd, Pt, Ag) #1 SLAM PASS-COATED
#2		#2 SLAM FAILED
#3		#3 SLAM FAILED-COATED
#4		#4 SLAM PASSED
#31	2)	TERMINATED PLATINUM PARTS
#32		#12 SLAM PASSED
		#13
	_	
#5	3)	280 MESH, TUNNEL KILN #1 SLAM PASSED-COATED) 1-A-1-1
#6		#2 SLAM PASSED
#8		325 MESH, TUNNEL KILN #1 SLAM PASSES-COATED \ 1-B-2-1
#7		#2 SLAM PASSES
#A	4)	Specially Thick Layers #A
#B		#B

Table 18b. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV
Naked #2K Worse one/Cracks

Naked #2K in Fluorinert

Voltage	ä	33	2650	SI→100	26-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500 >500pc Calib.	151-200	201-250	251-300	301+350	351-400	401-1450	451-500	%%% %%%	Calib.
9 ₹.25	0	7 3 300												2-500pc
1.25 1.25-2.5	53	4 7 8 8	9	٥	7		Started in at 2.0KV	at 2.0KV						
2.5 2.5 -3 .75	707	m	089	0			=		- 5		4		‡	
3.75 3.75 -5 5 5-0	730	4 Maxw 12 31	rellian – 4 S	- 2	_	7	-						‡	
Immediate Repeat in Fluorinert on 6/8/82	Repe	at in F	uoninert	/8/9 uo	82									
0+1.25 1.25+2.5 2.5	○ – ∞	→ ∞												01 01
2.5-3.75 3.75 3.75-5 5	9 126 9	onla	e	2		m †	v				-	4		RIGINAL POOR
	Repe	at in Fl	uorinert	Repeat in Fluorinert on 6/14/82	1/82									F.T QUI
0+1.25 1.25 1.25-2.5	00-													
2.5-3.75 2.5-3.75	132	- 3	1 		9	Started at 2.8KV	2.8KV						4	
~ £	22	٦ 8	•	2	-								;	

Table 18c. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K. 10,000pf, 5KV Soldered Lead Extensions with Heat Sinks on 6/21/82

Naked #	2K Mc	wated ii	a Vacuum	ı systen	n. atmosp	Naked #2K Mounted in Vacuum system, atmosph P in air. 6/15/82	5/15/82							
Voltage	Z	\$	S1+100	T 0	SO 151₹	51-4100 101-4150 151-200 201-250 251-300 301-350 351-400 401-450 451-500 501-550 -600pc Calib.	251→300	301→350	351-400	401-450	451-500	S01→5S0	4000pc	Calib.
Long, new 0	r cables	8 ~ ~												4→1000pc
1.25 1.25-2.5 2.5 2.5-3.75 3.75	24 1 1 2 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	4 22 2 4 8 8 4 12 2 4	64 		Starte	Started at 1.9KV								
3.75-5	193	135	30	Ξ	m	-	m	64	0	-	0	-	-	775. 825pc
Naked #2K	K Mo	unted in	Mounted in vac syst, atm P in	. atm F	in sir.	nir. 6/21/82								
0-4.25 1.25 1.25-2.5	000	000												
2.5 2.5-9.75 3.75	0 % 0	-1-	Φ.	-		-	-	Started at 3KV	3KV					
3.75	48 5 20	295	2	39	*	* -	60	m -	,	4	m	-		710,720 730,780pc
After 18	hours	in 10 ⁻⁵	hours in 10 ⁻⁵ torr vac., Naked #2KD. 6/22/82	. Naked	#2KD.	6/22/82								
0-4.25 1.25 1.25-2.5	90KG	m 0 7 6	8											
2.5 ~3 .75	2 2 6	2 °	7					Started at 3.1KV	3.1KV					
3.75-5	66 -	7	32	=	6	æ	-	0	-	7			-	875pc
Š	· =	. 91					-	_						

ere entre entre entre en entre
Table 18d. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

	151-200 201-250 251-300 301-350 351-400 401-450 451-500 501-550 -600pc Calib.	4-1000pc		675,825 1 960,940pc						1 675pc	
	401-450 451			-							
	351-400								3.1KV	-	
	301→350			7					Starts at 3.1KV	7	
	251→300			0						0	
	200 201-250		Starts at 3.1KV	7	-					-	
			Starts	S		18/82				•	
acu um	ZN ←-50 51-+100 101-+150			51	•	./9 wm.				2	
ys in w	15		-	3		y in va				21	-
er 3 da	\$		=	<u> </u>	• •••	4 4			. 8	157	•
X Aft	Ā	0000	, <u>e</u> o	82	2	K Aft	00	0-	. . .	522	=
Naked #2K After 3 days in vacuum	Voltage	0+1.25KV 1.25 1.25-2.5	2.5 -9 .75	3.75-55	2	Naked #2K After 4 day in vacuum 6/25/83	0÷.25 1.25	1.25-2.5	2.5-9.75	3.75+5	Š

りた。漢書ではは、まず、・

VOITE C	ል	\$	8 T	₹ 1		7000	950	9	932	3	7	¥		1	3			9	
•								}	3						_		3	odnc/	
£	219	Most A	Most <160pc +186, 246, Started at 600 volts	+186. 0 volts		180, 43	380, 431, 787, 789pc	789pc								텕			
1.25	-	32pc																	
1.25-2.5 1255 2.5 2.5 2	1255	2 6 7	216	88		52	20	90	•	^	7	9		s	~	4	\$		
2.5-8.75	686	,	765		97		30		~			4		4	1	Š		•	
3.75	•	•					3		•			•		•	- Control	<u> </u>		۰ ٥	
3.75-5	313							976											
~ f	- 1	Most	Most <220pc +2650, 3880, 9380, 9810+	+2650		9380.	9810+							4 1	40-10,000pc	ধ্য			
)	?		5	3		9	6 2 2 0 522pc 6 6 7 0 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 5 2, 5	U, 522p	U	7								
Voltage 2N	8 †		. 059	00¢	\$20	000 T	Calibr.	Calibr. →1100 →1200 →1300 →1400 →1500 →1600	ন ₹	Ť 8	₹ 8	400 T	1500	009 ∓	1700	98 1	061	42000	0
Q4.25																			
1.25-2.5			m	-	-														
2.5 2.5 ~3 .75					v	•		•	•	•		•	,	•		•	,		
3.75					1	-		•	•	-		•	m	r.	-	4	45	9	
3.75-5	ļ			۱ 8			1								4			ļ	
, 9																			
Voling: 2N -2500 -5000 -5500 -4000	şi Z	† 005	3000	+3 \$00	00	₩ 200	0005+ 00	¥ 8	₹ 005 ¥	0009	989	1000	1500	0009	0 -#8500	006	-850090009500		00001
\$7.23 .23																			
1.25																			
2.5																			
2.5-9.75																			
3.75																			
3.75-5	_	•	0	7	0	S	•	_		2	7	_	7	-	~	-	4	·	_
~			-		-								i	1	•	•	r –	1	

ORIGINAL PAUL OF POOR QUALITY

Table 18f. 1982 Data. Multilayer Ceramic Capacitors by Manufacturer K. 10,000pf. 5KV Red Coated #1 Better One

-850 →900 →950 →1000pc			
820 +6			
08↑ 0			-
0 75			
ار ا 105			ᆲ
→100 →150 →200 →250 →300 →350 →400 →450 →500 →550 Calibration →700 →750 →800 →100 →150 →800 →100 →150 →100 →100 →100 →100 →100 →1			8+2000pc
+550 €	ŧ		0
. 905+	4 -		
-4 50	13		
007+	<u>د</u> و		₩ 0376 —
+350	4 8		
1300 €V	24		-
+200 +250 +;	31		o 1600 to 2000
→200 Starts	38 -		Maxwellian to 1600pc Maxwellian to 2000pc 2 1 1
150	£ 15	6/8/82	15/82 2 Maxw 4 I Maxy 7 2
00 →	167 44 3	3/9 to	2 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2-25 -50 0 0 27 7	961 - 67 0	uorinert 5 0	8 ceversal or 6 2 2 1 5 2 2 2 1 5 2 2 1 5 1 5 1 5 1 5 1
in Flux 2→25 0 27 4	\$ = \$ E	1	\$ 0 2 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
# #IK	1003 18 18 29 29 29	: Repea 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 802 802 901 1592 1592 333 7966 912 912 912 913 913 913 913 913 913 913 913 913 913
Red Coated #1K in Fluorinert Voltage EN 2+25 +50 0+1.25KV 0 0 1.25 0 0 1.22.5 38 27 7	2.5+3.75 3.75 3.75+5 5 5 5+0	Inmediate Repeat in Fluorinert on 6 0+1.25 0 1.25 3 3 1.25+2.5 1 1 2.5 11 11 2.5+3.75 0 0 3.75 9 9 3.75+5 34 27 5 1 5 14 12 0 1 5+0 12 12	Inadvertant Polarity Reversal on 6/15/ 0-1.25

編 高原電子

Table 18g. 1982 Data. Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

6/21/82 Red Painted #1K Mounted in vacuum system, but at 760 torr	Red Pr	inted #	IK Mou	nted in	vacuum	systen	n, but a	ıt 760 ı	10													
Voltage	N		4+50 51+100 +150 +200 +250 +300 +350 +400 +450 +500 +550 +600 +650 +700 +750 +800 Calabra.	150	→ 200	→250	+300	+350	400	- 14 50 ·	- 200 ·	- 055+	009 - 14 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	- 059-	- 00/-	- 750 -	•800	-8 50	006+	+850 +900 →950 +1000pc	•1000p.	ن
0+1.25	00											• •	1 Innober	र्								
1.25-2.5	000																					
25-3.75	8 -	6.	9	7	-		Starts	Starts in at 2.7KV	7KV													
3.75+5	48 2	788	89	32	92	=	2	~	~	œ	œ	4	۲۱	0	4	C4	(1	n	_	4	٠	ŧ
~ }	3 %	. E	7																-			
6/22" 2	Red Pr	inted #1	Red Painted #1K After beine in vacuum for 18 hours erounded	heine in) vacuur	و	18 hou	¥	ded													
0+1.25	0																					
1.25-2.5	00																					
2.5+3.75	900	6		Starts	Starts at 3.4KV	>.																
3.75-5	272	207	31	9	=	7	7	0	-	0	2	73	7	0	_							
· }	- 6	- 63	-																			
6/24/82	Red Pai	inted #1	Red Painted #1K After in vacuum for 3 days	in vacun	um for	3 days																
2.5-3.75	22.0	<u>«</u>		Starts	Starts at 3.5KV	>.																
3.75±5 2.75±5	270	<u>\$</u>	\$	2	7	S	-	-	-	0	-	0	_	0	-	0	_	0	0		-	
• (• ;	į																				

____ 7F

R

Table 18h. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

#1K Red Painted after 4 days at 10⁻⁵ torr vac.

Voltage	ΣΝ	→50	→100	→150	→200	→250	→300	→350	→400pc	Calibration
0→1.25	0									4→1000pc
1.25	0									
1.25→2.5	1	1								
2.5	0									
2.5→3.75	15	13		1			1	Starts	at 3.4KV	
3.75	0									
3.75→5KV	177	125	32	10	3	1	1	2		
5	3	2			1			_		
5→0	25	22	3							

ORIGINAL IN THE OF POOR QUALITY

Table 18i. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

Red Coated #3K in Fluorinert

ğ				OF	PO	ÜΚ	Ć,	۔ آر		-			
96													
7 05													‡
+850 +900 +950 +1000pc													-
Ŷ													4
→8 50													ra .
00													
9													-
†													_
→													
÷650	υl									o i			_
Calibrate	Š									4+1000pc			
S 4 Q/4	ا نہ									11			
\$				‡									4
450			-	ţ									7
1450			0	7									m
90 1			7	2									4
→150 →200 →250 →300 →350 →400 →450 →500 →550 →600 →650 →700 →750 →800 Calibrate			S	8							ЖV		9-
300			æ	12							# 5:		~
- 520			7	6				8	_		Starts in at 1.9KV		w 61
8		Starts at 1.8KV	10.0										_
7		7	22 ~	33	82			_					9
↓		Start	63	₩	/8/9 1			7 -	-		•	7	35
EN →25 →50 →100		•	≛-	8	nert or		-	r m	• •		:	7	4 v v
\$		71	<u>8</u> -	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	Fluori		•	= *					
→ 25	7	3-	3 ∞	555 + S	.S		•	12	٠	, 82 82	م س م	'n	270 77 02
Z Z	0 7	88 -	. 90 E	925 52	2 00	900	70	, 25 S	11	6/15/) ## # <u> </u>	<u>+</u> m	\$ 8 C
Voltage	0+1.25 1.25	1.25-2.5	25+3.75 3.75	3.75+5 5+0	Immediate 0+1.25	1.25-2.5	3.75	3.75+5 5 (100mc)	Ĵ	Repeat on 0+1.25	25-25	3.75	3.75+5 434 270 74 35 10 5 (700kec) 88 77 5 2 1 5+0 77 70 5 1 1

がいれているとのできないというというというというというないというないできるとのできないというできますが、これできることのできないないできないできないできないできないできないできない。 これのでは、それには、これのできないできないできないできないできないできないできないできない。 これのでは、それには、これのでは、これには、これのできないできないできないできない。 これのでは、これには、これのできないできないできないできない。 これのできない これのでき

Table 18j. 1982 Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV

Red Painted #3K, Mounted in vacuum system, but in air

0001← 05h← 006← 0c8←			•	÷ -											
1450															
006+															
0.8←				L1											
+800 +															
→ 750				۲,	-				-						
100 →150 →200 →250 →300 →350 →400 →450 →500 →550 →600 →550 →700 →750 →800 Calibrate 4+1000pc				6 1											
१५ १५ १५				-											
+600 →6 Calibrate 4→1000pc				~											
→\$ 50				C1											
200				-											
450				41											
400				æ		unded.									
→ 350				v		irs, gro									
→300				3		18 hou			c4		3 days	-			Spc.
→250		>		r 10	•	in for	X				um fer				3 to 10
→200		P. 1.9		91	•	n vacui	at 2.2		-	6 1	m vacu				÷ + 0;
150		Starts	-	25	•	fler being in vacuum for 18 hours, grounded.	Starts		∞	-	being				Aost <
1 00		-	~	69	9	After	-		<u> </u>	7	After	7 -	4	jed.	ounts 1
1 \$0		30	105	293	, \$	led #3K	11	19	138	₽	ited #3.	Q. 4	55.	- <u>E</u>	34 0
N	00	.E. 0	Ξ-	. 84 .	. %	Red Pain	0 50 0	. <u></u> .	. Se	4	Red Painted #3% After being in vacuum for 3 days 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0=4	. 89	175	>
Voitage	0+1.25	1.25+2.5	2.5-3.75	3.75-5	· }	6/22/82 0+1.25	1.25	2.5-3.75	3.75÷5	· }	6/24/82 0+1.25	1.25-2.5	2.5+3.75	3.75 3.75•5	^ }

OF POOR Quality

Table 18k. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV 6/25/82 #3K Red Painted After 4 Days at 10⁻⁵ torr vac.

Voltage	ΣΝ	>5 0	→100	→ 150	→200	→ 250	→300	→350	→400	→450	→500	→550	→600	→6 50	→700	→750 pc	,
0→1.25														<u>Calibr.</u> 4→1000)nc		
1.25															<u> </u>		
1.25→2.5																	
2.5																	•
2.5-3.75	58	55	3	Starts	out at 2	2.8 KV											
3.75	0																
3.75 →5	175	140	25	9	1		1	1									
5	1	1															
5→0	62	56	4		2												
6/25/82 1	Reverse	Polari	ty														
Voltage	ΣN	→ 50	→100	→ 150	→200	→250	→300	→350	→400	→450	→500	→550	→600	→650	→700	→750	- :
														Calib.			
0 11 26	454	220	0.6				_							20 ->5 00	Юрс		
0→1.25	456	330	85	23	4		2	1				1					
1.25 1.25 → 2.5	0	967	250	110	60	21	10		_	•	_					_	
2.5	1373	867 5	258	110	59	21	10	4	6	2	7	1	1	i	1	5	
5 → 3.75	840	ر <u></u>		627 -					71					_ 27			
3.75	3	1	1	027		-	•		/1				1	4→100	M=2		• .
3.73	3	•											1	40→10,			
3.75→5KV	386						- 267							40 110,			
			(4→100	00pc)										Combin	ed (4→1	000)	
				10,000pc)									*	•	•10,000pc))
5	8	4	-	•	1		+8,570p	c							` -	, , ,	
5→0	97	82	9	4		1	•							1	4→100	Орс	

→750 pc

OF POOR QUALITY

→3750 →4000 →4250 →4500 →4750 →5000 →5500 →6000 →6500 →7500 →7500 →8000 →8500 →9000 →9500 →10,000

2 0 1 1 0

5 7 6 2 4 3 0 4 1 3 3 2 0

110

3 FOLDOUT FRAME

Table 181. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV Naked #4K - Better one to start. Later cracks

40C	
Fluorinert	
2	
#4K	
Naked	

		3										
Voltage ΣN		26→50	2→25 26→50 51→100 101→150 151→200 201→250 →300 →350 →400 →450 →500 >500	151→200	201→250	→300	→350	→400	→450	→500	>500	Calib.
0→1.25KV 0 1.25 6	ç										•	2→500pc
1.25+2.5 20	. 4 ~	4	1 (77pc)	Starts at 2.3KV	.3KV							
2.5+3.75 706	, c	969	•	-	4	m	-		present.			
3.75+5 630	٥									1	7	
5 25	61	4	_	_							‡	
5+0 35	38	4	_		C)							

Immediate Repeat in Fluorinert on 6/8/82

_
C1
m
4 -
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
00 138 188 188 188
25 +2.5 3.75 +5
0+1.25 1.25 1.25+2.5 2.5 2.5 3.75 3.75+5
111

Repeat in Fluorinert on 6/14/82

C1

Starts at 3.3KV	
-	-
-	
ÇI	c
33 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	- 0
1 2 3 6 7 7 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	32
0 0+1.25 1.25 1.25+2.5 2.5 2.5 3.75 3.75	} v \$

かんかん 一分れいからいます しころう 大学をいるないのないないない ちゅうかんしょうないはななななないとうない

Table 18m. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV Soldered Lead Extensions with Heat Sinks on 6/21/82

Naked #4K Mounted in vacuum system, atm. P in air.

6/21/82	4→50	→100	→150	→200		Calibr:
0→1.25 0						4→1000pc
1.25 0						
1.25→2.5 0						
2.5	1					
2.5→3.75 123	66	48	6			
3.75	1					
3.75→5 BRI	EAKDOW	N on ram	ping. (Th	ought to be	feedthru, but is #4K.	See below.)
					e connected into vac. s	ystem for
	time this	day. At	t 10 ⁻³ to:	rr		
0→1.25 0						
1.25 0						
1.25→2.5 2	2					
2.5 BRI		N quiesce:			e	
	Again.	, on diffe	rent feed	thru about 1	hr later at 10 ⁻⁵ torr	
6/25/82						
0→1.25 0						
1.25 0						
1.25→2.5 89	64	16	7		2	
2.5	1					
2.5→3.75 BRI	EAKDOW!	N at 3.4K	V			

Table 18n. 1982 Data: Multilayer Ceramic Capacitors

				labie	lable 18n. by	1982 Data: Manufacturer	ata: A	Multulayer Ceramic Capacitors K. 10,000pf. 5KV	opf. Si	nic Cap	acitors					
6/25/82	Seme de	្ត គ. មា	dorinert	6/25/82 Same day, in Pluorinert Again, #4 K.	2 7.											
Voltage	ጃ	2N 0+50 +100	8 T	\$ T	8 17 17 18	+ 280	90€	93.8	00	\$20	905	5.	00 Y	Calibr	700	- 750
0+125 1.25	8 0	67	9	•								-		1000	स्र -	
1.25→2.5 2.5		710 +	222	87	99 -	= ^	S	C1		m	e -		(1	+725,775 +925	S	
2.5 -13 .75		Maxwe ← S	illian to 5	1000+	•	1					•					
3.75 5 5 5 5		525 15 7 3 499	m			-	365		-			7		40→10,000pc	3d00	
Voltage		8 9 ≈	\$50	00 0	98	000 ₹	1000 → 500	42000	→2500 →3000 →3500	000 °	43500	-4000 -4500	¥200	-50005500		0009 *
0+1.25 1.25 1.25-2.5 2.5 2.5-3.75							3		•	•	•		•	c	•	•
s. 5 5		ò			-		2	^	_	v	m	•	7	0	4	S
Voltage	ä	1 6500	-1 000	-6500 →7000 →7500	1 8000	-8 800	0006		→9500 →10,000pc	æ						
0+1.25 1.25 1.25+2.5 2.5 2.5+3.75																
3.75 3.75 -5		,	w	•	-	2	7	٣	-							

からをあることはないとういとう アイ・・アイ・・アストルのできないというかできます。こともははませることでいているというにはないとはない。

Capacitors	
ramic	11/1/
Multilayer	2
1982 Data:	
. 80	
Table	

	~	Man. K#12.	K#12.		Naked. N	by to Lea	by Manufacturer K. 10,000pf, 5KV Leads. (Use Cu Tape) 10,000pf, 5K	cturer I Cu Ta	K. 10.0k ipe) 10.	00pf. 5 .000pf.	SKV.	Stacked	by Manufacturer K. 10,000pf, 5KV No Leads. (Use Cu Tape) 10,000pf, 5KV, Stacked Monolithic (My S/N 32)	ic (My	, S/N 32	~ `	
Voltage	N	ΣN →2S		. 05+	001↑	→ 1 50	7500	→250	4300	→350	₩	→450	↑ 005	→550	-6 00 -6 50		4100
.15+1.25	0	<u> </u>												- •	4→1000pc	υI	
1.25-2.5	\$5.0		53		0	4	æ	C)		C)	Starts	Starts at 1.7KV	2.				
2.5+3.75 3.75	460		387		0 -	~	7	01	m	-		-	~3pc/sec				
3.75+5 5KV(1)	309	▼				-	-	C)	242	C)	+1450,1960	0961		••	40→10,000pc	00 bc	
5KV(2) 50KV	6	7	52	•••	- 20	¢1	m	_						~ 1	4→1000pc	υl	
Voltage .15→1.25 1.25 1.25→2.5 2.5	N	→ 750		008+	+850	000	056	0001↑	1500	000₹	→ 2500	→3000	→1000 →1500 →2000 →2500 →3000 →3500 →4000 →4500 →5000 →5500	4000 -	4500 1	\$000 →\$	200
2.5 ÷3.75 3.75 3.75 ÷5 5KV(1) 5KV(2)		32							Ξ	~	C1	m	-	61	-		-
Voltage .15 +1.25 1.25 1.25 2.5 2.5	N	9	¥ 2	- 005	+ 7000	→7500	→6000 →6500 →7000 →7500 →8000 →8500 →9000 →9500 →10,000	→8 500	0000	61	0°01↑	0					
2.5~5.75 3.75 3.75~5 5KV(1) 5KV(2)		74			6					C)							

.: Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV I. Naked, No Leads. (Use Cu Tape) 10,000pf, 5KV S/N 31)) 059- 009- 055- 005-	(2)36. 4+100pp. 4+100pp. 0 1 0 3 0	3 10	40→10,000pc	4→1000pc 2	500 -4000 -4500 -5000 -5500			× × × ×			
acturer K 00pf. SK	1.00\$±	Starts at 1.4KV	13			→1500 →2000 →2500 →3000 →3500			<u>e</u>			
y Manuf pe) 10.0	90	m	0			-5200			∞		→7000 →7500 →8000 →8500 →9000 →9500 →10,000	-
citors b Cu Ta	3 8	4	15			000;			7		1 9500	ci.
c Capac s. (Use	008+	-	គ	26.	9				61		000 (m
Cerami o Lead	05°+	4	<u>«</u>		-	9001	0	m	1		18 S00	m
Itilayer iked. N	00°±	- =	23		8	9	0	S			000 9	
a: Mu II. Na S/N 3	S T	99	- 8		7	8	***	· v			+ 7500	-
1982 Data: K#11 (My S	8 T	84	151		91	\$ \$0	0	-		-	47000	S
	9	_	 m	1	 	8	0	•			16 500	vs.
Table 18p.	₹	331	1183		38	4750	(1)	9	- 47		9009	-
 	ä	5 1 428	1572 3	427	131	ጃ					ጸ	
	Voltage	1.45 + 1.25 1.25 1.29 + 2.5	2.5~8.75 3.75	3.75-5	5 5-0KV	Voltage .15-4.25	1.25 1.25-2.5 2.5	2.5-8.75 3.75	3.75-5	S-OKV	Voltage .15→1.25 1.25	2.5 2.5-3.75 3.75 3.75-45 5 5-0KV

OF PUBLICATION

SKV	
er Ceramic Capacitors by Manufacturer K, 10,000pf.	& ∞
K, 10	9
-	ठ्
tur	~
fac	Z
anc	ed,
Z	A Z
٩	.
ton	¥
Saci	S
J	Š
Jic.	€ .:
iran	#
۲	≤
Multilayer	S S
	Group
::	-
1982 Data:	<u> </u>
2	섫
861	Ë
÷	
Table 18q.	
꿁	
I	

450 +500 +500 +500 +500 +500 +500 +500 +
Starts at 1.8KV
33 > <
V 1 1
500 -550 -600 -650 (Calibr. 4-1)000
-600 -650 Calibr. 4-1000

	0\$2)	+775pc			7,000		۸ 0 ۷	20	→1C,000		-
	00/↑	<u></u>			-			\[\lambda \cdot		- 0056+		_
SKV	- 650	Calibr. 4→1000pc		8+2000pc 5 > 40+10,000pc	- 56	008 ↑		^ _ _		· 0006+		-
Multilayer Ceramic Capacitors by Manufacturer K. 10.000pf, 5KV foup IA #1. (My S/N # 5), Red Coated, INK Lot 1648.	009 1			\ \ \ 4		1 700		^ _ V				
Multilayer Ceramic Capacitors by Manufacturer K, 10,000 Group IA #1, (My S/N # 5), Red Coated, INK Lot 1648.	15 50		_	∞ ∨	Ì	0091						-
ofacture d. INK	905		Starts at 1.8KV	٨		1500		<2><3>	†	000/←		-
y Manu d Coate	450		Starts	=		1400		< 0 >		1 6500		4
citors b 5). Re	¥00		m	^ -		7300		< 0 > < 1 > <	<u> </u>	0009+		
ic Capa S/N#	+350		C1	3		→ 1200				1 5500		7
Ceram #1. (My	200 €			× × × × × × × × × × × × × × × × × × ×		00		><>		-4000 -4500 →5000		6
ultilayer up IA 3	+250				 6	0001←		C1	1	¥ 500		∞
ى نىز	→200		C1	s > 1	-	950		\ \ - \				10
Table 18r. 1982 Data Task 1-A-1-1	150	•	m	< 215	٨	906		٨		₩3000 +3200		13
18r. l Task	8 T	;	77	273 >	6	1850				2006		15
Table	20 20		/07 9	~- \	V - m	00 8		\ \ \		→ 2500		16
	Z		62 6	5 1633 V 681		K			' >	ä		_
	Voltage	0+1.25 1.25	2.5	2.5-3.75 3.75 3.75-5K	5KV 5+0	Voltage 0+4.25	1.25 1.25→2.5 2.5	2.5 -3 .75	3.75-5KV 5KV 5-0	Voltage 0-4.25 1.25	1.25-2.5 2.5 2.5-8.75	3.75 3.75 5KV 5+0

一番のとうのはないないとう あずまいしい

More discharges and higher energies than the naked one correspondingly. (My S/N #6)

ORIGINAL PAGE IS OF POOR QUALITY.

	→750		C1					4000			4			
	+7007	۲Į	0	١ږ	<u>સ</u>	-		. 005€←			7			
X X	÷650	4+1000pc		20→5000pc	40→10,000pc						17			
00pf. 5	009		-	ଧା	41			- 500 -			17		000001	0
Multilayer Ceramic Capacitors by Manufacturer K, 10,000pf, 5KV roup IB #1, (My S/N #8), Red Coated, INK Lot 1649.	→550	_	0		٨	-		→2000 →2500 →3000			17			-
eturer INK Lo	005+	>	m		^ 	ļ				C1	1	1310pc	-8 500 -4 000 -4 9500	-
Manufa oated,	450	Starts below 1KV	4					→1400 →1500		+3000pc +3125pc		+1840, 4310pc	+8500	0
Multilayer Ceramic Capacitors by Manufacturer K, 10, Group IB #1, (My S/N #8), Red Coated, INK Lot 1649	¥00	Starts be	4			-	•	→I 300		C 1	-25-		0009	СI
Capacit (/N #8)	+350	-	12					→I 200						***
Ceramic (My S	200€		<i>.</i> =					0001←	-	C1	1		→7000	S
ilayer (IB #1	4250		4		250	390 	•	950	0				√ 6500 →7000 →7500	7
g	1 200	-	38					006	0	2			0009	4
Table 18s. 1982 Data: Task 1-B-2-1	₹ 20		83					-18 50	-					∞
s. 198 Task 1	2N →50 →100 →150		251					00 Y	0		- 07 - - 1	8	±4500 ±5000 ±5500	•
able 18	₹		1530 1069					→ 750	7				-4500	9
L	Z	80	1530		270	555 8	92	K					ጃ	
	Voltage	0+1.25	1.25-2.5	C	2.5 -8 .75 3.75	3.75 .5	2	Voltage 0→1.25	1.25+2.5	2.5-3.75	3.75 -5 5	2 1 0	Voltage 0→1.25 1.25 1.25→2.5 2.5 2.5→3.75	3.75 3.75 -5 5 5-0

Table 18t. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K. 10.000pf, 5KV Task 1-B-2-1 Group 18 #2, (My S/N #7), Naked, INK 10t 1649.

		Tas	Task 1-B-2-1		inp IB	Group IB #2. (My S/N #7), Naked, INK Lot 1649	# Z./S	^t 7), Nak	ed, iNk	Lot	649.				
Voltage	Z	\$ \	100	1 50	7500	750	00€	→350	00₹	- 1 450	→200 →250	009+ (-4650 Calibr	. 00/+	→750
0+1.25 KV	0 0	9							Starts in at 1.2KV	at 1.21	>		4+1000pc	દ્યા	
1.25-2.5	556	430	73	21	∞	٠ ي	т	4	7	0	2 0	-	0 ·	٠1 .	-
2.5 -3 .75	1909	<pre></pre>	- <mark>V</mark> -	212	٧ ٨	78	\	34	V	24	∨	× ×	- IS	- ~	
3.75-35	826	Ţ		550	1		183		Ì		50	1		65 —	
5KV 5+0	15	\$	3	-	†	-	, s		1	V	- 3	۸	odonot- or	દ્ય	- cı
Voltage 0-4.25KV	Z	008	18 50	006	-, 950	000	→ 100	→ 1 200	1300	→ 1400	→1000 →1100 →1200 →1300 →1400 →1500 →1600 →1700 →1800 →1900	00 →1 700	008 ↑		75000
1.25 1.25 -2 2.5 3.5		0	0	0	-	0									
2.5 -3 .75	•	4 >	^	V	m	^	· < = >	< 11> < 2 >	\ \ \	\ \ \	< 5 > < 0 > < 3 >		< 2 > < 1 >	< 0 > < 0 >	۸ ۷ ۷
3.75→5 3.75→5 SKV	l	†		= -		1	+	13	∞ ↓	† -	← 4 → +7436nc	†	7		9
0 0 0 0 0		٧		- 72		^	V	7		-	Mock		-		0
Voltage 0+1.25KV 1.25 1.25+2.5 2.5	Z	→ 2200	→ 2400	→ 2600	→2600 →2800	→3000 →3200 →3400 →3600	→3200	→3400		73800	7000				
2.5-45.75 3.75 3.75-45 5KV		æ	'n	6	8	9		C 1	æ	7	3++				
21 0		-	0	0	-	0	0	0	0	0	0				
		T	ERRIBL	E PERF(TERRIBLE PERFORMANCE	<u> </u>									

● A MAN A

Table 18u. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, Special Doubly Thick Layers, 3000pf, 5KV, Naked Leads

→200 →250 →300 →350 →400 →450 →500 →550 →600 Calib.		4→1000pc			1 1+875pc	L
)9← 0						
→55					7	•
005←					m	
→450					S	
400					4	
→ 350				-	∞	_
→300			>	-	4	
→250			at 2.4K	-	∞	
→200			Starts at 2.4KV	\$	24	
→150			_	17	36	_
001↑			-	61	19	
→20						
4+25			œ	314	341	Э
ΩN	0	0	<u> </u>	402 4	511	
	0→1.25	1.25	1.25→2.5 2.5	2.5→3.75 3.75	3.75→5 5	5+0

Table 18v. 1982 Data: Multilayer Ceramic Capacitors by Manufacturer K, Special Doubly Thick Layers, 3000pf, 5KV, Naked Leads

おはないできますというということというできているないというないというないできているとうというないできているないではないできませんというないできないというないというないというないというないというないという

Table 19a.: Post Burn-in P.D. Measurement Calib: 1.4→300PC cal at 0 KV Manufacturer M: 1000pf X5R 10KV

V KV #3	ΣΝ	1.4→12	→25	→50	→75	→100	→125	→150	Σn _i q _i pc
0→5 5	0 0								
5→10	1	4.3pc							
10	ò	рч							
10→0	Ö								
Reverse Po	larity						Revers	se Again	
0→5	0								
5	0								0 again
5→10	0								•
10	0								
10→0	0								
<u>#8</u>									
0→5	0								
5	0-								
5→10	28	24	4						Σ214.pc
St at 7KV									•
10	1	1.4pc							Σ1.4pc
10→0	4	1	2					+33pc	Σ76.9
#27									
0→5	4	4							Σ27.9
St at 3KV	_								
5	0								
5→10	52	44	5	3					Σ383
10	4	4	,	3					Σ22.3
10→0	3	3							Σ15.6
		-							₩ 15.0

Table 19b.: Post Burn-in Measurement HV Cal Cap: 0 KV Cal: 1.4→300pc

V #13	ΣΝ	1.4→12	→25			
0→5	2	2				Σ7.6pc
St at 4KV 5	0					
5→10	0					
10 10→0	0 0					
Reverse Po	larity					
0→5	0					
5		_				
5→10 10	0 2 1	2				Σ7pc Σ3pc
10→0	Ö	•				25pc
<u>#24</u>						
0→5	2	1.4,2.6				Σ5pc
5 5→10	0	5				S .C
10	1 0	3				Σ5pc
10→0	4	3	1			Σ21.5pc
<u>#5</u>						
0→5	0					
5	1	4.7				Σ4.7pc
5→10	0					
10 10→0	1 0	4.7				
	·					
<u>#21</u>						
0→5	0					
5	0	-				
5→10	4	3			+ 58pc	Σ67.5
10 10→0	0					
10-0	U					

Table 19c: Post-Burn-in P.D. Measurement Recalibrate 1.2→200pc With Low Voltage Cal Cap

V #17	ΣΝ	1.5→9	9→17	17→33	34→50	50→67		
0→5 5 5→10	0 0 0							
10 10→0	9 0	9						Σ19.8
<u>F#20</u>	Crack	in Coatii	ng					
0→5 5 5→10 10 10→0	32 5 181 14 59	25 4 141 6 55	5 21 3 4	2 13 5	3	1	+16.4 +94,121pc	Σ212. Σ27. Σ1482. Σ168. Σ235.8
#12								
0→5 5 5→10 10 10→0	0 0 0 14 1	7	0	7			+24.8	Σ209 Σ1.9pc
F#29								
0→5	1		1					
5	21	16	3	2				Σ115.
5→10 10	18 19 20	3pc 2	5 7	2 11	2			Σ216. Σ399. Σ426.
10→0	6	4	1	1				Σ55.5

V	ΣΝ	1.5→9	9→17	17→33	34→50	51→6/	
#26							
0→5 5	1 0	2.0pc					
5 → 10	53	41	2	2	1 1		+135pc Σ 876.
10 10→0	0	3					Σ10.
#15							
0→5 5 5→10 10 10→0	0 0 0 0						
#22							
0→5 5 5→10 10 10→0	0 0 0 0						
#11							
0→5 5 5→10 10	0 0 0 0						
10-→0	1	1					

ORIGINAL PAGE 19 OF POOR QUALITY

Table 19d. Post Burn-in P.D. Measurement 1.2→200pc

W	ΣΝ	1.2→9	0-17	17→33	24-50) -> 66	→83		
V #4 St. at 3k		1.2-79	9-7 1/	1/733	3 47 3(J → 00	→ 03		
0→5	40	31	8	1					Σ236
5 5→10	1 153	3	26	2	5	1		+75pc	Σ1196.
10	14	9	6	1		_			Σ 150.
10→0	42	36	4	1	1				Σ237.
<u>#6</u>					Rever	se			
0→5	0		0→5		1	3.1pc			
5 5→10	0 0		5 5 → 10	29 11	29 7	0	2	161	Σ104.
10	0		10	18	8	0 10	<u>-</u>	T04	Σ164. Σ161.
10→0	0		10→0	0					
					Rever	se again			
0→10				23	19	1	2	+84.9	Σ245
Run reve	ersed on	#'s 1 and	d 2						
#1									
0→5 5	1	1.9pc							
5 → 10	1	2.3pc							
10	0	•							Σ 7.3
10→0	0								
Reverse									
0→10	24	21	3						Σ129.6
10	11	4	7						Σ88.9
10→0	Ö	•	,						200.7
<u>#2</u>									
0→5	1	2.3pc							
5	0								
5→10	3	3							Σ9.4
10	13	6	6	1					Σ120.5

ORIGINAL FAUL (3) OF POOR QUALITY

V	ΣΝ	1.2→9	9→17	17→	33 34→5	60 →66	→83pc	
Revers	e							
0→10 10	42 27	39	2 11					+118 Σ245.6 +41.7 Σ227.2
#28	Reversed							
0→5 5	0							
5→10	17	11	2	1	0	3		Σ239.5
10 10→0	15 1	6 2.3pc	9					Σ166.6
Reverse	again							
0→10 10 10→0	29 7 0	18 7	4	3	3	1		Σ397 Σ12.
#19 R	leversed							
0→5 5 5→10 10 10→0	9 10 12 6 1	7 10 7 6 2.4pc	l i	1				Σ69. Σ134 Σ10.7
Reverse		2.400						
0→10 10	55 2	40	5	10	29.0			Σ440 Σ8.6
#18 R	eversed							20.0
0→5 5 5→10 10	Missed 0 50 12	34 11	3 1	3	4	3	2	+85.7 Σ762
Reverse a	ıgain							
0→10 10 10→0	36 6 1	6 5	3 lpc	4	2	3		+89pc Σ547 Σ14.8

Table 19e. Post Burn-in P.D. Measurement 1.2→200pc Low Volt Cal Cap

#16 Reve	rsed									
KV	ΣΝ	1.2→8	→16	→33	→ 49	→ 66	→83	→100		
0→5 5 5→10 10 10→0	0 0 9 0 1	8 2.5pc							+24.3	Σ50.6
Reverse A	gain	-								
0→10	11	10							+31.7	Σ58.9
#25_Same	Polarity	,								
0→5 5 5→10	0 0 1322 (Burst)	1015 1.5pc	227	73	4	1	0	0	+144	Σ7955
10→0	0									
#10 Same	Polarity									
0→5 5 5→10 10 10→0	2 2 0 0 5	1.7, 4.7 2.2, 2.4	7pc 1pc							Σ6.4 Σ4.6
#30 Same	Polarit	y								
0→5 5 5→10	0 0 0	3.3	9.5							512.0
10	2	1	1							Σ12.8
#23 Reve										
0→5 5 5→10 10 10→0	0 0 9 3 1	8 3 1.3							+45.3pc	Σ63. Σ6.5

KV	ΣΝ	1.2→8	→16	→33	→49	→ 66	→83	→100pc		
Reverse A	Again									
0→100	5	5 1.9pc								Σ29.7
10	1	1.9pc								
#6_Same	Polarity									
0→5	0									
5	0									
5→10	10	8							+50.5,118	.8 Σ190
10	2	2.3, 2.	.9pc							
10→0	1	2.1pc	•							
F #7 Sar	me Polari	ity								
0→5	477		109	44	20	2	2		+90.6pc	Σ4600
Start at										
5	0(!)									
5→10	894	557	170	139	22	6				Σ8379
10	17	10	1	5					+52	Σ231.6
10→0	496		93	46	2				+55.7	Σ3606

Table 20a. 1984 Data: Final Post-Burn-in P.D. on Manufacturer M. 1000pf, 20KV, X5R discs Tag+, Calibr: 3.5+600pc

1	7															
>	ል	ş	¥	₹	8 T	100 120 1200	1 200	-250		→350	00 1	₹ 1	200	+550	→300 →350 →400 →450 →500 →550 →500pc Σpc	ង្គ
O+10 Starts at	72 4KV	æ	2	••	6	~	•	•	280pc							23801.
10 10-43 13 126	2	2%2	3 8 ¢	N 71	-	-	7	•	8	-						Σ1098 Σ2353 Σ1925
13-4:7	78	+	7	2	m	₩ ;	m	ging	-	291 <u>pc</u>						23098
11	193	159	*	••	-	32										23299
1710	35	53	m	•	m	123pc 2										Σ_{1403}
DOUBTE	ָת ת															
#17 Pass																
01-0	282	<u>z</u>	21	±	•	∞	••	~	•	•	•	7	-	m	598pc+	Σ18020
01	Ē	53	7													2308
10-43 91 13 Sé	. 6 26 26	63	9	-	~	•	7	ю	0	8	0	•	•	-	570pc+	25501
<u></u>	<u> </u>	226	22		-	•	m	•	7	0	7	-				258 257 271
Ţ	78	•	2.7	v	•	••	•	7	•	,	•	•	7	0		21418 216881
2																
# T																
O-10 Starts at	6 X 4	•	7												•	266.5
<u> </u>	0 v	•	_												• •	293

							C	OF FOO		-									
→550 →600pc ∑pc	226 2260	2222			Σ25	Σ23 Σ389 Σ471		+581pc Σ16225	+601pc Σ16206	1723	Σ13795			258	230.9	2584	Σ953		
								· -	-										
1450 ±500								0	ю										
								8	1										
¥ 00								, mana,	-		+436pc 2								
→100 →150 →200 →250 →300 →350								-	ю		7								
1300								9	7		က								
→250								7	7		2								
4 200								σ.	11		m								
→150								o	9		∞								
700								13	16		4								
5/4	7							22	23		35								
	0 8					m r3		27	33	- -	55				`	۰,	†		
						26 43				28				4					
Z	4 =	24	-	19 2	2 9KV	4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		170 4KV 0	215	53	330			4)KV	m (5 ½	0	olarity	> c
>	13 13→17	17	17-10	#25 Pas	0→10 Starts at	10 4 10→17 29 17 45 17→0 0	#8 Pass	0→10 Starts at 10	10-47	17	17-10	NO	#S Pass	0→16 Start at 9	10	<u></u> _	17.	Reverse P	<u> </u>

ORIGINAL:

				۰۰ ×										
$\Sigma_{ m pc}$	\(\Sigma \) \(\Sig		Σ237 Σ13.7	Σ1535 Σ115.8		j	276 Σ204		Σ134	Σ1319 Σ741 Σ13	7119		2407	<u>Σ</u> 250.9
00¥														
+550														
£ 60 7														
450														
₹ 00			+188pc	+555pc										
+350				•										
4300														
4250														
2007														
· 180			•	7										
8 ↑			•	5										
	98pc		,	58.1 1						84pc 4				
۶ ۲		-		• 0					7	12 5 1			4	7
⁴ 23	18 25	C1	-	v.		∞	22		6	53 50 5			24	15
		4	> ^{- 2}	, 00		00 &	25 6		=>°					
	10→17 21 17 25 17→0 0	Pass 0	ts at 81		Pass	2 2	s at 15	Pass	s at 8K	۲ .	Pass		7 at 121	
>	10 T	# 1	Star 10	71	#16		17 17 17 17 17 17 17 17 17 17 17 17 17 1	#27	0→10 Starts 10	17-10-1	#22	0 <u>+</u> 01	10+1 Starts	17-10

diene	
XSR	
> >	•
20	
1000pf	•
Σ	
Manufacturer	
on	
P.D.	
Final Post-Burn-in	
Data:	
1984	ď
20b.	nitial P.D
Table	no L
-	Failed on Initial
	2

		Σþc	Σ20			Σ14.9 Σ31.5	<u>.</u>		Σ11.3	Σ632	2387 272			245.3	254.7
		009	• •			MM			W	W	40			A i	ង
الم discs علم الم		1 520													
v. xsF		8 f													
franklackaret M. 1000pt. 20KV, XSR discs	;	\$ 20 \$ 7													
i, 1000	3	3													
	9	056													
	3	3													
5	€ 1000														
	1 200														
	→150								62pc						
	8 T								7						
	275						•								
D.	£). Tag +		9			Tag +			
Failed on Initial P.D.	+ 25	•	7			7 7	nitial P.I	-	56	22		tial P.D.	,	۸ ۷	
ailed on	ä	000			Polarity	0 7 7 0	iled on l	0 -	34	25 4		d on Ini	001	15KV 5 0	
#21 F	>		Starts at 14 17 17-0	OK	Reverse Polarity	0+10 10 17 17 17-0	#19 Failed on Initial P.D.	0 00	10-47	17	οK	#7 Failed on Initial P.D.	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Starts at 17	о <mark>ж</mark>

ORIGINAL OF PORT

						0	FP	GC.	-		-					
$\Sigma_{ m pc}$		Σ1867	22135 239 2789		Σ 42240	22936 289.7	_			Σ124.9	Σ1084	238 2828		2367	23.5	Σ1340 Σ215.9 Σ161
909					+586pc											
¥20					ю											
¥96					ю											
- 1 450					8	435pc 6										
00 \$					4	8										
→350					7	18										
7300					6	Ξ										
→250					12	∞	231pc 2									
7500					17	6	9									
150		115pc 1			43	25	8									
<u>80</u> ↑		4	4		118	62	199							55pc 2	ç	4 4 4 468.9
5/4																
1 20		22	26		129	119	313				10	7		ю		13
\$2 7		89	72 5 61			133	547			=	09	28		Ξ	-	52 112 118
ä		85 4KV	0 102 5 63	s	574 2KV 0	394 9	11115			11 8KV	0 6 ,	65		16 5KV	-	69 13 18
>	#2 Pass	0→10 Starts at	10 0 10+17 102 17 5 17+0 63	#15 Pass	0→10 574 Starts at 2KV 10 0	10→17 17	17+0	NO	#2 Pass	O-10 11 Starts at 8KV	0 10 10 10 10 10 10 10 10 10 10 10 10 10	17-0	#30 Pass	0+10 16 Starts at 6KV	10	10→17 17 17→0

>	X	1 25	1 20	<i>>15</i>	100	→1 50	0027	→250	→300	→350	400	-¥450	1 200	₩	$\Sigma_{ m pc}$
#24 Fa	iled														
Starts at 1KV 0-10 430	1KV 430	327	62	81	Ξ	10	4	-	7	т				+512pc	Σ12286
10	34	33	-				10620								Σ384
10-13	8	55	12	11	-	0	202								Σ2300
13	19	62	S												2760
13+17	=		7	9										+224pc	22157
17	135	123	= 6	•	~	,	-							73067	21769 73006
25 25	297	230	55	r <u>c</u>	o 6	1	-							74567	25013
Peaks at	25pc)	•	•								513pc		
25→0	\$29	306	93	34	33	27	10	œ	S	က	4	S	1		Σ24590
#28 Fa	iled														
									271nc						
0+10 Sarts	70 4KV	25	15	10	3	∞	4	4	-						24710
01	12	12													Σ112.8
10+13	23	9	e	4	-	e	c	က							\Sigma 22169
13	39	39													Σ380
13+17	35	-	(*	4	65	4	4	2	282pc 4						Σ3373
17	8	. 62	• •	•	•)	•						2874
17-25	101	9	18	9	٣	5	3	S	ю	က				+383pc	26222
ž	001	151	71	-	2 <u>6</u> 2										57273
3 1	201	701	01	- '	۰,	٧	2	r	•	,	,	•		-400 con	70001
25-10	×		Э.	0	*	٥	0	•	4	7)	*	_		+430,502pc	7,29,1

C... QF : ORIGAL.
OF POG.

	$\Sigma_{ m pc}$	Σ149	Σ110 Σ586 Σ1252	22196 24272 299.8	2795	227 2226 2254 2692	Σ817 Σ2182 Σ1840 Σ365
	009 1						
discs	₹20						
v. XSR	900			+243pc			+173pc
f, 20K	¥ 50						
1000p	¥00						
ırer M,	1350						
anufactu 20KV)	1300 1300						
on Ma MXSR	-250						245pc 2
n P.D.	7002			7	181pc 1		•
· Bum-ir (MDC	· 1 20 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	110pc 1	-	7	0	114pc 1	0
Final Post-Burm-in P.D. on Manufacturer M, 1000pf, 20KV, X5R discs (MDC 1000 MX5R 20KV)	' 8 ↑	•	0	0 86.3pc 2	_	0 0	4 100.7pc 3
	- 5/4		***	4 0	-	0 -	3 0
Table 20c. 1984 Data:	95	-	- 5	13	\$	0 - 4	- 40 0
.:			14 34 13		_	v	7 00 7
le 20¢	\$ 1		14 34 113	61 216 10	. 27	s 6 24 20 20	62 66 150
Tab	Failed ΣN	2 0	14 37 118	85 261 10	Polarity 35	5 11 25 27	64 89 158 7
	#10 Fa	0 0÷10 (15sec+5)	10 (100sec) 10→17 17	17 - 25 25 -0	Reverse Polarity O+10 35	10+13 13+17	17 17-25 25 25-0

Table 20d. 1984 Data: Final Post-Burn-in P.D. on Manufacturer M, 1000pf, 20KV, X5R discs (Tag on (-), (HV Terminal)

Failed: Much P.D. Initially

						ORIGIN	
	Σnjqį	Σ11892	Σ319 Σ5040	\(\Sigma\)	Σ2964 Σ16457	523237	
	909 T				+551pc 2	+155pc \(\Sigma \)	
	→550	Το +600pc	20		2	S	
	1 200		+534,538	+587	0	S	
	→400 →450 →500 →550 →600			-	ю	0	
	00 }			71	æ	ю	
	→ 350		-	0	0	9	
	→250 →300		7	m	7	•	
	→ 250			-	m	∞	
	↑ 200			ю	S	6	
	1 50	istake	2	9	13	12	
	<u>8</u>	Ž	9		17		
	, ST+	Erased	9	7	30	35 28	
	95				2.2		
	- 22	14	17	100	192 294	333 261	
	ል	0 187 4 1	110 28pc	115 165 25pc	216 437 40.50pc	480 402(!)	
	>	, F.	Peaks at	13 13-47 Peaks at	17 17-25 Peaks at	25 25 -1 0	

を受けているというできます。 できていたかい つかがたか とばない かいのいきゅうちょうよう の事を必要なない こんないこと

Table 20e. 1984 Data: Final Post-Burn-in P.D. on Manufacturer M. 1000pf, 20KV, X5R discs

	_	_		
$\Sigma_{ m pc}$	Σ17160	+603pc ∑10220	Σ13391	
Ω 909 1	+602pc	+603pc	+608pc	•
₹20	ю	0	٣	
1	-	2	0	
₹ 20	-	-	4	
90 5	4	0		
-350	~	0	0	
200	0	-	-	
→250	0	2	9	
1700	9	ĸ	ю	
150	9	4	7	
8 †	15	01	9	
₹	35	18	31	
95	52	20	30	
+ 25		167	-	
Z	356 1.5 KV 0	258	219	
>	0-10 356 Starts at 1.5 KV 10 0	i i i	17-10	ON

ORETO OF POOL

一時に対すると かってものできる いっていなる

1000nf, 20KV XSR discs	COCID VICTO TOTAL
×	
al Post-Burn-in P.D. on Manufacturer	30770
D. 0	0
۵.	>
Final Post-Burn-in	
ίΞ	
1984 Data:	
Table 20f.	

# Fai	Fail - Cracked Epoxy coat on Final	ed Epox	y coat o		Visual											
>	Z	ş	1 20	5/4	8 T	1 S0	00 7	→250	7300	+350	90 1	1	ş	Ş	8	i.
0-10 1156 Starts at 1KV	1156 1KV	802	176	98	30	20	4	7	4	_	7	2	3 -		4553nc	Zpc 730409
01	8	٣													24 22 2	
£ 5	68		<u>~</u>	Ξ	-	_	171pc									Σ14.7
13+1	. 5 S	97 97 98	4 -		ø.									+346 363m2		Σ2425 Σ135.5 Σ2726
1740	568(!)		<u>0</u>		601	45	11	10	7	7	7	_		77 75+		Σ528 Σ528 Σ5673
Same Pol	arity										ı	•		4		171677
Starts at 2.5KV 0-10 434 10 18	2.5KV 434 18	15	57		24	00	m	8	4	0	-	-		+607 pc	-	\$10,981
10+17	276 58	229	21		13	7	-	0	7	0	400pc			12000		7471 76817
	829	2	5		16	35	13	\$	12	90		7	0	~		2581 2581
Remise Polarity	olarity											I	•		4	£ 1 + C
01-0	816 0	465	611		127	53	22	15	4	•	7	0	7	571 pc		237103
10 10 11	189	4	25		19	8	4	2	-					•	- +305nc 3	55057
17-10	996	712	88		S 6	32	11	16	4	9	13	s	•	4		2366 241071

Σpc		233	2383	2161	2840	2357	\(\Sigma 227\) \(\Sigma 1818\)	21.2 21.2		Σ163	Y364	N 17.	2565 2555 2555	Σ1585	∑3902	23648 247
009 1																
1 550																
1 200																
1450																
90 1																
+350																
300																
.+250																
200 17																
150								3								
8 T							m	4						3500	į	<u>8</u>
SL					,		∯ - →	92					-	£ .	9	•
							22								42	
		•		±	89	21	141	347		<u> </u>	37	10	3 20	72	212	211
ል መ	5	9KV	37	15	7.2	74	164	429	iled	15	37	55	52 8 8	80	260 30.5pc	247
>	# 52	O-10 Starts at	0	10+13	13	13-47	17 164 17-25 102	25 25-0	#26 Fa	010	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	13-17	17-25	25(1) Peak at	25(2) 25±0

they are within specifications on all the other tests. "Fai!" in the above two paragraphs means "rejection". None of the capacitors tested or screened actually failed electrically in a catastrophic way, during the tests or screening procedures.

The capability of D.C. partial discharge measurements to detect damage and cracks is well demonstrated in the above data.

e) Single disc, 16.5 KV, 5000pf of Z5U, BaTiO3, study:

One of the serious questions that has arisen is whether the barium titanate formulation called Z5U is suitable for large, thick discs such as 16.5 KV and above, capacitors of 5000pf. This Z5U BaTiO₃ formulation shows among other things a sharp drop-off with applied D.C. voltage in dielectric constant from about 6000 at low voltage to only about 1500 at field strengths of 50 volts/mil which is the average field strength which the manufacturers use for 16.5 KV discs. This formulation Z5U is ferroelectric, piezoelectric and has electrostriction at large field strengths. All of these phenomena are part and parcel of the large molecular polarization, and dipole and domain alignment that give rise to the extremely large dielectric constant at low voltages to begin with.

The partial discharge activity of the thick (above 15 KV) Z5U capacitors is quite high, even when the raw data has been corrected for the capacitance decrease with applied D.C. voltage. (The calibration of partial discharge equipment depends on the test sample capacitance, and is usually done at low voltage.) Table 21 shows some of the raw data on coated and uncoated 5000pf, 16.5 KV rated. Z5U disc capacitors, illustrating the capability of the ramp method to detect damage, such as small edge chips, on these capacitors when tested in Fluorinert liquid FC-40. Table 22 gives corrected summary data for another set of the same type of units, epoxy coated as well as bare, and the P.D. activity is still seen to be excessive. This gives warning of the high electric stresses and instabilities involved in a thick disc of the high dielectric constant formulation.

Table 21. 1984 Data: Raw P.D. Data, 1st Batch, Z5U, 5000pf, 16.5KV Rated Barium Titanate Calibr. 35-600 nc

Coated V KV KV 10 10 10 117 117 117 117 117 117 117 11		}														
V KV Coate		₹														
0+10 10 10+17 17-27 25-0 25-0			\$	8 T	\$ T	00; `	S;+	1 00 1	95 F	00 1	→450 pc					પ્ર ₁₉₁
0+10 10 11 17 17 25 25 25 Coate			Starts	at 6KV												ፈ
10 10 17 17 25 25 Coate		62	25	25 19	S	7	0	0	_						+436pc	24650
10 + 17 + 17 + 17 + 17 + 17 + 17 + 17 +		<u>«</u>	6	٣											+163	2897
17-25 25 25 25-0 25-0		2757	1611	617	43	6									+226	\Sigma 143,670
17 - 22 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0		188	Ξ	61											¥01+	27787
25-0 25-0 Coate		6889	2028	452	9	4	S	_	_						+356	2190,603
25-10 Coate		_		Z	15	4	61	S	6	0	_		_	0	+503	239,885
25-10 Coate	106(2)	98		32	4	=	61	=	œ	7	4	ĊΙ	-	0	+518	231,745
Coate		∞														Σ126.9
	Coated C ₃₈															
			Starts	Starts at 4KV											7177	
070	186	122	\$	11	4	-									+545pc	
2			91	4	-			(peaks a	(peaks at 42.5pc)	∵					+1 S6pc	
¥0		2387	1129	<u>\$</u>	83	9	(1	_	-	•					+371pc	Σ114,750
11		229	8=	25												28629
17-25	8330	6054	1814	4	8 2	C1									+598	2172,500
25	810/1	_	145	78	<u> </u>	SAP.	2	9	9	m	m	4	_		+610pc +598pc	224.931
3	508(2)	308	4	25	17	2	9	4	9	9	9	9	اب ،	, C1	809+	
757	±	<u>-</u>													+ 76pc	
Coate	Coated C40 Turn over	rn over														
2		ì	Starts at			•	,									
Ē	138	92	33	20	m	m	0	-							+373pc	+373pc 25460
10 10 17	30 5289 491	18 3034 339	8 1621 122	590 29	37	3 (peaks a	3 3 (peaks at 23.3pc)	ઉ							+486pc +102	2782 2146,390 210,939

(F)	→3.50 →4.00 →4.50 pc	od G	2.187,410		Σ5.6		0 2 (peaks at 41.9pc)	+169.7		+352pc 29435. +391pc +437pc <u>26</u> 274.	21.5	+306pc <u>23743</u> .		+510pc 2136,369	+493pc +560pc	
Table 21. (Continued)	90 °			(peaks at 25.1pc)			rı	<u>\$</u> -							-	
21. (057	••					C1	۳.	~			m			v	,
Table	005	200.3pc	<u>×</u> ×				0	~,	4	C)		0	٢		-=	
	3	7	S				10	67	27	0		4	4		<u> </u>	34.7
	90 T	397	37				1 4.0KV 28	757	711 20	4		6KV 8	645	74.3pc 21	20 2 4	(peaks at
)	2086	171				Starts at 4.0KV 44 28	2771 2771	2716 93	\$		Starts at 6KV 31 8	1510	158	2269 157	•
	Şi	9865	9	5.6pc			<u>3</u> 9	3088	334	186 3		S æ	2499	393	5840 2 591	
	ል	9358	817(1) 601	****		42	253	5692 527	1.094	258(2) 3	2	97	4707	474	8638 S 871(1)	
	>	17-25	25	25-0		Coated C42	0 1 0	<u>1</u>	17-25 11,094 25 448(1)	25-0	Coated C ₄₃	<u>0</u> 0	<u>F</u>	17	17+25 1 25	

						Table 21.		(Continued)	Ę.				
> ≥	ል	Şi	Ŷ	8 T	\$ T	00€	S;	00 °	95 T	8	#80 pc		چان م
52	150(3)	35-6000pc 150(3) 2840,2459,2381,2693,1440,1160-857pc	35-60 59.3381		440,1160	#87pc							Z58.827
Ş	•	35→250. 78	. 250 -5 00. 38		14 c 500750 pc 15 counts	14 counts pc unts							, (2)
7	•	•											77.507
Coated Ces	. ‡												
Î	156	101	Starts 2	Starts at 5.5KV 28 16	~	-						+419pc 24606	24606
00	45 5451	86. 1.	1736 (peaks	11 5 736 673 (peaks at 21.5)	S3 (34	m	-	0	r:	-		+415pc	Σ1123 Σ156,878
1	529(1)	339	<u>3</u> 3	25	:	•						:	Z12,068 Z4,442
# # # # •	874(1) 2	623 2	207	3 &	<u></u> 0	rı m	e)	rı	um			+347pc +365pc	2194,070 220,257 222.
Coated C33	£33												
			Starts 2	Starts a. 5.5KV	>								
Î	8.	8	C1	0	61							+289pc, +480pc ∑1331.	E 1331.
Ī	- 6 E	70 5.3 F. Turn it over	=	m	-	-						+589	अ. १५ १५
9	1755	1252	364	8	2	•	-	e1					238,891
<u>o</u>	101	2	9									+432pc, +1 1pc \(\sum_{2220}\)	02223
<u>F</u>	7185	5180	1455	\$	\$	9	~	C1					51 C4 808

Σ11.2

17—25 8723 6700 1543 440 27 6 2 2 1 0 25 749(1) 598 89 34 14 3 5 2 3 18-60 625(2) 506 65 25 13 6 2 4 1 18-60 625(2) 506 65 25 13 6 2 4 1 18-60 625(3) 506 65 25 13 6 2 4 1 18-60 625(3) 506 65 25 13 6 2 4 1 18-60 61 1
749(1) 598 749(1) 598 625(2) 506 20 14 567 36 47 36 66 31 12 66 602 1110 76(1) 99
749(1) 598 625(2) 506 20 14 before 251 166 7 36 66 31 12 6 602 1110 76(1) 99
before before 20 14 36 47 36 66 31 12 66 602 1110 76(1) 99
before 251 166 7 5 47 36 before b 66 31 12 6 02 1110 76(1) 99
/ before 251 166 7 36 47 36 before b 12 6 502 1110
251 166 7 5 47 36 47 36 66 31 12 6 502 1110
251 166 42 28 4 2 4 2 0 47 36 8 1 7 7 7 7 before b) Looks OK A 1 0 1 66 31 18 10 4 1 0 1 12 6 1 3 492 53 9 4 1 0 176(1) 99 42 21 5 2 1 2 1 0
47 36 8 1 before b) Looks OK 66 31 18 10 4 1 0 1 12 6 1 3 4 1 0 1 502 1110 831 492 53 9 4 1 176(1) 99 42 21 5 2 1 2 1
before b) Looks OK Starts at 6.5KV 66 31 18 10 4 1 0 1 12 6 1 3 3 9 4 1 176(1) 99 42 21 5 2 1 2 1
HV before b) Looks OK 66 31 18 10 4 1 0 1 2502 1110 831 492 53 9 4 1 176(1) 99 42 21 5 2 1 2 1
66 31 18 10 4 1 0 1 12 6 1 3 9 42 53 9 4 1 176(1) 99 42 21 5 2 1 2 1
2502 1110 831 492 53 9 4 1 176(1) 99 42 21 5 2 1 2 1
176(1) 99 42 21 5 2 1 2 1

Table 21. (Continued)

> ;	ä	ر ج	ķ	<u>8</u>	05 1←	007	4,50	008+	05';↑	00 1	-450pc	$\Sigma_{n_1}q_1$
>			Calib.	3.5- x 600pc	ગ્રહ							<u>.</u>
Naked C ₈	~											
a) No HV	2	b) Looks OK	ks OK									
0→10 10 10→17	261 12 2312	224 6 1076	Starts at 5KV 17 14 3 2 751 434	1 5KV 14 2 434	2 40	0 01	_	-				+540pc ∑5000. +477pc ∑798. +352pc ∑78,690
17	150(1) 85(2) 2	72 56 6.5	59 23 7.3	<u>5</u> ≈								24501 22025 213.8
Naked C ₇	7											
a) No HV	>	b) Big	b) Big chip on one side, chip & solder peel on other	pis auo	le, chip i	& solder	no ləəd	other				
Ţ	2371!	1495	423	307	76	30	10	m	m	-	CI	Σ75,744
STOP												
Naked C ₂₁	21											
a) No F	No HV ??	b) Ch	b) Chip at edge	<u> </u>								
0 <u>1</u> ←0	135	121	Starts a	Starts at 3.5KV 7 5	-							+182pc \(\S2059\)
<u>-</u>	>		Restarts	Restarts at 13KV	>							+350pc.
10-47 17 171	53 9 28	40 27	3 6	_								+608pc Σ1517 Σ188.7 +343pc Σ620.
			Run aga	Run again with		polarity reversed						

Table 21. (Continued)

1711年17年一年八月十五日

1 mg

7744

リートイン・ハン・コールのできたと思想的に対して、ことの言葉を選出る言語のは実際の表情ですって、これでは、他に表現の情報を表現の言葉を表現していません。

										•
	$\Sigma_{n_1q_1}$			7410pc 231,494. 843.0	5.502	Σ6.5pc		+407, +414pc Σ17,892 +167pc Σ14 356	+326nc 53487	î i
			7.7.7.1	4100				+407, +414pc +167pc	34901.	2
	→250 →300 →350 →400 →450pc									
	90 7							ÇI		
-	₹20							_		
ontinue	7300							4		
Table 21. (Continued)	750							12	-	
Table	007		BURSTS				ıdy	<u>×</u>	-	
	1 S0		<u>8</u>				already	20 0	∞	
	80 T	Chip	11 5KV 30				Starts at 2.5KV	49	=	
	\$ `	b) Enormous Chip	Starts at 5KV 259 30	45pc 1			Starts a	45 134	6	
	Ş; •	b) En		77	6.5pc			127 753	31	STOP!!
	A 2	¥.	2080	æ	-		s	280 901	73 ec	;
	KV KV Naked C ₂₂	a) No HV	<u>0</u>	10 STOP	9		Naked C ₂₅	0-+10 280 10 901 after 75 sec	10-0 50 sec	•

一日の中の本のというのでは、大きのでは、大きのでは、大きのは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、

Table 22. 1984 Data: Corrected P.D. Data 2nd batch, Z5U, 5000pf, 16.5KV, BaTiO₃

Due to capacitance change with voltage the raw data needs to be corrected.

0V Calibr.	5KV	10 KV	17 KV	20KV	25KV		
÷1	÷1.4	÷2.3	÷3.3	÷3.65	÷4.4	=	Correction
	0→10	10→17	7 17→20	17→25	;		
	÷1.8	÷2.8	÷3.5	÷3.9		=	Correction

Criteria

- (1) Ramp to 17KV
- (2) No more than 10,000→15,000 pc
 No pulse > 100 pc
 (3) Quiescent at 17KV
- (3) Quiescent at 17KV
 No more than 5x1.5pc/sec = 7.5pc/sec
 No pulse > 25pc

Table 22. 1984 Data: Corrected P.D. Data 2nd batch, Z5U, 5000pf, 16.5KV, BaTiO₃

Coated #C	:46			
Volts KV	CIV	ΣΝ	Corrected Highest Pulse	$\begin{array}{c} \text{Corrected} \\ \boldsymbol{\Sigma}\boldsymbol{n_i}\boldsymbol{q_i} \ \text{or} \ \boldsymbol{\Sigma}\boldsymbol{n_i}\boldsymbol{q_i}/t \end{array}$
0→10 10 10→17 17 17→25 25	3KV	74 0 155 609 660 3352	221pc 0 211 28 143 70	3150pc 0 2044pc 25.68pc/sec→No 3948pc 190.80pc/sec
Coated #C	247			
0→10 10 10→17 17	6KV 2953	123 134 4008	100.pc 50 106 136	1550pc 8.32pc/sec 43,210 No 469.70/sec
Coated #C			130	407.70/sec
0→10 10 10→17 17 17→20 20	4KV	163 16 3348 948 658 2105	231 27 80 35 29.4 25.7	3,490pc 2.11pc/sec 36,214 No 46.90pc/sec No 3430 71.90pc/sec
Coated #C	246			
0→10 10 10→17 17 17→20 20	3KV	504 18 3798 433 789 974	215. 47.8 148.2 24.8 51.7 29.5	7317.pc 1.50pc/sec 40,950pc No 29.93pc/sec 4920.pc 62.21pc/sec
Coated #C	251			
0→10 10 10→17 17 17→20	2KV	488 55 4133 1099 1264 1553	333pc 59pc 91 35.7 143 25.7	9460pc 4.64pc/sec No 40,350pc No 52.80pc/sec 6874pc 7180pc

Table 22 (Continued)

Coated #5	52				
Volts KV	CIV	ΣΝ	Corrected Highest single pulse	Corrected $\Sigma n_i q_i$ or Σn_i	$q_{f i}/t$
$0 \rightarrow 10$ 10 $10 \rightarrow 17$ 17 $17 \rightarrow 10$ 20 Coated #0	6KV	36 0 121 980 139 1366	219pc 0 186 21.8 154 22	1257pc 1150 27.40pc/sec 794 34.10pc/sec	
0→10 10 10→17 17 17→20 20 Coated #C	9KV	8 23 32 136 37 202	13 8 37.5 36.3 25.4 150	40 0.93pc/sec 191 5.48pc/sec 141 7.88pc/sec	No
0→10 10 10→17 17 17→20 20 Coated #55	4KV	64 58 354 134 59 180	288 8.9 143 140 66 16.7	1825 2.24pc/sec 1910 7.67pc/sec 302pc 6.18pc/sec	No No
0→10 10 10→17 17 17→20 20	5KV	281 23 4441 574 1634 1151	246pc 33pc 157pc 37pc 95pc 34pc	4722pc 2.63pc/sec 48200pc 43.30pc/sec 8530 76.50pc/sec	No No
Coated #56 0→10 10 10→17 17 17→20 20(1) (2)	2KV	897 11 4739 573 1070 1122 486	329pc 22pc 192pc 34.2 81 35.3 32.7	12,130pc 0.80pc/sec 47,680 44.10pc/sec 6630pc 66.57pc/sec 26.56pc/sec	No

Table 22. (Continued)

Coated #5	57	Better			
Volts KV	CIV	ΣΝ	Corrected Highest pulse	Corrected $\Sigma n_i q_i$ or $\Sigma n_i q$	_i /t
0→10 10 10→17 17	4KV	62 0 56 57	62.2pc 0 17.8 8.5	655pc 0 289pc 1.63pc/sec	
17→20 20	_	14 91	21.7 15.8	61.pc 2.63pc	
Coated #:	58				
0→10 10 10→17	3KV BURSTS	265 0 861	300.5 207.8	6,773pc 0 5175pc	No
17 17→20 20	DONO10	50 57 92	42.4 62.8 57.2	2.57pc/sec 413pc 3.78pc/sec	
Inadvertar	ntly - same	polarity repeat			
0→10 10		0 0			
10→17 17 17→20		15 48 10	15 54.5 13.4	57.8pc 2.77pc/sec 34.8pc	No
20		61	13.7	1.67pc/sec	
Coated #	62			$\Sigma n_i q_i^{}/t$	
0→10 10	8KV	3 1	28.3pc	35.5pc	
10→17 17 17→20 20		36 58 37 85	101.4 14.8 54.5 10.4	409.pc 1.70pc/sec 138pc 2.25pc/sec	
Reverse p	olarity on i	t			
0→10 10 10→17	2KV	129 14 4092 515	293pc 76 129 45.4	3188. 1.46pc/sec 44,152pc 38.60pc/sec	No
17 17→20 20		912 840	49.1 24.9	5968 51.50pc/sec	

Table 22. (Continued)

C ~ ~	tod.	#63
v.oa	leu.	#03

Volts KV	CIV	ΣΝ		Corrected Highest single pulse	$\begin{array}{c} Corrected \\ \boldsymbol{\Sigma} \boldsymbol{n_i} \boldsymbol{q_i} \\ \mathbf{or} \\ \boldsymbol{\Sigma} \boldsymbol{n_i} \boldsymbol{q_i} / t \end{array}$
$0 \rightarrow 10$ 10 $10 \rightarrow 17$ 17 $17 \rightarrow 20$ 20	5.5KV	182 30 5347 531 1093 1766		305.pc 46. 200.7pc 71.5 172. 99.2	3320.pc 3.11pc/sec 60.828pc No 39.10pc/sec 7510pc 87.53pc/sec
Coated	#64 (Rever	se tag from #63)			
0→10 10 10→17 17 17→20 20	5KV	31 6 89 95 48 278		90.5pc 10.8pc 171.pc 11.2 38.5 36.7	522.pc .126pc/sec 693pc No 2.61pc/sec 224.8pc 7.10pc/sec
Coated	#61 (Rever	se tag from #63)			
0→10 10 10→17 17 17→20 20	3.5KV	231 0 145 123 67 429		78.9 8.5 48.2 66.5	2435.pc 0 1866.pc 3.178pc/sec 329.4pc 12.74pc/sec
Reverse	the polarity				
0→10 10 10→17 17 17 20	1KV	599 11 3384 334 520 703		163pc 33.9pc 121.4pc 28.8 53.4 44.1	7541pc 1.517pc/sec 36,878pc No 24.42pc/sec 3298pc 42.29pc/sec
Coated	#60			pc	pc of pc/sec
0→10 10 10→17 17 17→20 20	7KV	151 10 4563 459 881 1135	152	339.pc 35.2 121.4 38.8 120.3 28.	2668.pc 1.317pc/sec 50,450pc No 32.18pc/sec 5725pc 59.91pc/sec

Table 22. (Continued)

Coated #65, Looking for highest pulses:

KV			Calib	Looking for l	highest pulses:
0→10	7.5KV	128	→600	83.9pc	2,127pc
10		19	→600	43	2.247pc/sec
10→17		1529	→6000	181.7	13.648pc No
17		460	→600	40.	40.20pc/sec
17→20		69	→6000.	25.4	1088pc
20		775	→600	47.1	53.20pc/sec

Coated #68 Hi Voltage Cal Cap

			Cal	Highest pulse	Highest $\Sigma n_i q_i$	
0→10 Adjusted	5.5KV cal at 10KV	193 V	at OKV ÷1.8	284pc	3486.	
10	· · · · · · · · · · · · · · · · · · ·	13	±1 &	31pc	1.69pc/sec	Meas.
10→17 Adjusted	cal at 17K	2790 V	÷1.5	386pc	28,800pc	
17		174		29pc	17.94pc/sec	Meas. NO
17→20	cal at 20K	323	÷1.1	33.6pc	2668pc	
20	cai at LOR	238		25pc	16.0pc/sec	Meas.

一、日本語の「大」の「「大」であるのはないのであっているできませれている。

Experience, upon Life testing with these 5000pf. 16.5 KV Z5U capacitors and also earlier experience with some 37.5 KV units has shown a greater than usual tendency to fail catastrophically after only a few hours or days during the 80°C burn-in at rated or slightly above (10-20%) rated D.C. voltage. This is especially the case when the Life test is done on bare units in FC-40 Fluorinert liquid, not coated with the DK-90 fluidized bed epoxy coating.

This failure tendency has not been experienced with 1000pf, 10 KV single discs. It must be remembered that a 10 KV 1000pf disc is a more ideal shape than a 20 KV 1000pf unit. These get to be very far from the ideal large area, thin disc shape, and the edge effect becomes important. The electric field lines near the edges of the thick, blocky capacitor are not parallel to the cylindrical or thickness axis, but bulge outward. There is a component of the field lines perpendicular to the ceramic and medium-of-immersion interface. The boundary condition between two insulating media is that the normal components of the electric fields E at the interface are inversely proportional to the dielectric constants. If E inside the ceramic of dielectric constant 4000 is approximately 50 volts/mil, then even if its normal component to the cylindrical face is only small, such as 0.5 volts/mil, then immediately outside the ceramic the normal component would be of the order of 1000 volts/mil. The polarization charge on the cylindrical portion would be positive near the positive condensor plate and negative near the negative electrode. This can be seen from the analysis of Adams and Mautz, Figure 15, [24]. This makes the midplane parallel to and half-way between the electrode planes a transition plane with possibly more lattice dislocations and flaws than elsewhere and hence weaker breakdown strength. Beginning failure modes blow "wormholes" apparently diagonally from the negative condensor plate out through the middle region of the cylindrical surface whereas

Figure 15. Charge distribution for a square parallel-plate dielectric-loaded capacitor. (After Adams and Mautz.)[24]

total failures have diagonal chunks of ceramic broken out from the negative plate to the midregion on the cylindrical surface, with the rest of the breakdown path a carbon track along the cylindrical surface from the mid-region to the positive plate. The material in which the ceramic is embedded must be of very high dielectric strength, must adhere extremely well and should preferably be an immovable solid rather than a fluid.

It appears that above about 15 KV other types of capacitors should be considered rather than BaTiO₃ discs. These could be impregnated, reconstituted mica types or strontium titanate SrTiO₃ discs.

f) A Recent Pulse-Type Life Test on thick ceramic disc capacitors, SrTi03:

In collaboration with a contractor (General Electric Co.), initial and final D.C. P.D. measurements with a pulse-type Life test in between was carried out on some Strontium Titanate (rather than Barium Titanate) capacitors. These were thick discs. epoxy-coated, 2000pf.

Six were 33 KV rated, six were 40 KV. Life test was carried out at 80°C in Silicone oil, with electric stressing consisting of 2 x 10⁸ pulses of 20 KV height, 1 Khz repetition rate and of the order of 800 amperes peak discharge current. Several lessons were learned:

- (1) Among the survivors more damage was evident to the 33 KV rated samples than to the 40 KV ones. Table 23 for the 33 KV #10 versus Table 24 for the 40 KV #2 illustrates this. The last column in the Tables is integrated summed total P.D. charge transferred during the 100 second dwell on each voltage plateau.
- (2) The summary table 25 is for all samples. It gives integrated charge transfer on the ramps in picocoulombs. It is very striking that the 3 failures that occurred during the Life tests were those units that had the highest initial partial discharge, namely #'s 5 (40 KV rated), #12 and #13 (both 33 KV rated). This demonstrates again that on a statistical basis there is a correlation between high probability of failure and high initial partial discharge.

ORIGINAL PALLING OF POUR QUALITY

			Tabl	Table 23.	Š	ontiu	m Tit	anate	Singl	e Dis	c Cap	acito	r #10	. 2000p	rontium Titanate Single Disc Capacitor #10, 2000pf, 33 KV Rated	ated.		
Calibr	•	.8-400pc												BEFORE	Ë			48-4000pc
Voltage	ä	87	7	7	9	8	· 02 F	₹ 9	₹ 98 1	¥081	7 00 3	1 20	() ()	-280-	-100-120-140-160-180-200-220-240-260-280-300-320-340-360-380-400	+ 098+-01	380 -400	Σn _j q,
Ş	=	=																Σ 128pc
2	S	S																57
02 02 02	•	•																34
20	0																	0
% 70 430	7	_																39
8	0																	0
30-40	2	7	71		_													<u>861</u>
\$	ø	•		-	_													162
\$ 5	41								-									2083
20	163	121	7.7	m	m	-	~	-	_	0	_	~						3446
SO 10	86	62	=	~	×	-	-	0	0	_								1850
													AF	rer 10 ⁸	AFTER 10 ⁸ DISCHARGES	S		
Î	0																	
2	0																	
20	m	~	-															2 36
2	63	63																537
£ 2	45	Ŧ	~	7														523
2	240	222	<u>.</u>	S	-													2530
0 0 0 0 0	991	=	2	•														2219
\$	765	78	89	=	S	-	-	8	•	-								8886
\$ 02	*	280	=	=	•	-		-									-	5279
20	<u>\$</u>	9111	132	41	11	<u> </u>	•	-	m	_		-			_	-	7	+412pc, 424pc
000	23	1.	•															375
																		,

CLEARLY DAMAGED

Table 24. Strontium Titanate Single Disc Capacitor #2, 2000pf, 40 KV Rated.

Calibr	→	4.8-400pc	×				,	BEFORE	005-08	ې و
Voltage	Z	2 †	' ?	3	_	F B	2			: :
010	r)	ri								0 F
0	12	m								
10-20	ri	r)								<u>.</u>
20	0									, ק
20-+30	11	cı								9 6
8	0									٠ <u>۶</u>
30-40	-	0	_							3 7
\$	-	0	-							73.7
40-50	15	<u>*</u>	-	3						1803
20	101	1		9	ri					2081
SO-160	77	\$		<u>0</u>	9	-	_	_		766120
3	138	125	†	_	۲,					7d10C-
9	*									1871pc
								AFTER 10 ⁸ DISCHARGES		
0 T 0	0									
9	0									
10-20	0									
2	0									X 410c
05+0;	rı	_	_					Superior of the Paris of State		oc
8	-	-						Only slightly worse.		150
30-40	12	9	C1							72
\$	∞	36								944
40-50	6	35	<u> </u>	C1	0	_		-		1756
20	\$	132	13	_				-		3816
80-160	134	16	21	•	4	_				7.350pt
3	366	279	**	25	•	.	m	_		
3	=	•	~	c	_	~ 1		-		610

Table 25a. Before Life Test on Ramps. (Each column is sum of its ramp and preceding column). Σpc.

1 40 16.7 52.4 1031 52.8 42.8 42.8 42.8 42.8 42.8 42.9	S	Rating KV	0 <u>+ 10</u>	0→20 KV	0→30 KV	0→40 KV	0→50 KV	09 <u>+</u> 0
4012.938.568.53051254035.270.690.317536.34020.553.594.71397204000480.4022720400066.341224433308132161360244333040100015.039733066116553317330661165533173304084041527	-	40	0	16.⁴	52.4	1031	2328	4288
40 35.2 70.6 90.3 175 3623 40 20.5 53.5 94.7 139 720 40 0 0 480. 4022 720 33 98 132 161 360 2443 33 0 40 160 150 1503 2443 33 0 66 1165 5331 7 33 0 66 1165 5331 7 33 0 66 133 3373 8 34 0 40 840 4152 7	7	9	12.9	38.5	68.5	305	1226	3097
40 20.5 53.5 94.7 139 720 40 0 480 4022 3412 40 0 666 3412 2443 33 98 132 161 360 2443 33 0 40 880 3513 443 33 0 66 1165 5331 7 33 0 66 1165 5331 7 33 0 66 133 3373 8 33 0 40 840 4152 7	ю	40	35.2	70.6	90.3	\$21	3623	23,851
40 0 480. 4022 40 0 666. 3412 33 98 132 161 360 33 0 40 880 3513 33 0 0 1000 15,039 33 0 66 1165 5331 33 0 40 733 3373 33 0 40 840 4152	4	40	20.5	53.5	94.7	139	720	7117
40 0 666. 3412 33 98 132 161 360 33 0 40 880 3513 33 0 0 1000 15,039 33 0 66 1165 5331 33 0 40 840 4152	2*	40	0	0	480.	4022		
33 98 132 161 360 33 0 40 880 3513 33 0 0 1000 15,039 33 0 66 1165 5331 33 0 0 733 3373 33 0 40 840 4152	9	40	0	0	.999	3412		
33 0 40 880 33 0 1000 1 33 0 66 1165 33 0 0 733 33 0 40 840	01	33	86	132	161	360	2443	
33 0 0 1000 1 33 0 66 1165 1 33 0 0 733 33 0 40 840	=	33	0	40	880	3513		
33 0 66 1165 33 0 733 33 0 40 840	12*	33	0	0	1000	15,039		
33 0 733 33 0 40 840	13*	33	0	99	1165	5331		
33 0 40 840	14	33	0	0	733	3373		
	15	33	0	40	840	4152		

*Later failed, #5, #12 during Life test; #13 on post-Life P.D. test.

(情報などれてきり グン・

Table 25b. After Life Test on Ramps. (Each column is the sum of its ramp and preceding column).

			(Each column	ı ıs tne	sum of its	ramp and	cach column is the sum of its ramp and preceding column).	
SN	Rating	0100	0→20	0+30	0→40	0+20	09←0	
_	40	0	39.6	149.6	934.6	4502	15,749	Worse
C1	40	0	0	40.8	190.8	1134	4950	Worse on last ramp
т	40	0	0	53	661	414	1408	Better
4	40	0	0	43.6	366	6901	2723	Better
2*			1					
9	40	0	Worse 34.8	513.8	2181.8	8969	14.094	Worse early on, about the same later.
10	33	0	36	9.655	2778.6	8057.6		Worse
=	33	0	92.6	292.4	1540	5628		Somewhat better
12*	33							
13*	33	9	42.8	712.8	2400	BREA	BREAKDOWN	
14	33	0	43.2	428.8	3391	9289		Worse
15	33	0	20	449	2122	3318		Better

It must be realized that 2×10^8 pulses of 20 KV height is an extremely stressful test, and if the Life test had been carried out at steady D.C. voltage, there probably would not have been any failures. Such a D.C. Life test is planned on some of these $SrTiO_3$ capacitors in the near future.

CONCLUSION:

Acceptance/Rejection criteria:

D.C. partial discharge testing is a sensitive test of insulation integrity and it is non-damaging. The test article is only exposed to a slow D.C. voltage ramp to the voltage which it is supposed to see in service or somewhat above. There are no fast frequent stressful polarity reversals with steep voltage rises such as in A.C. partial discharge testing. The D.C. P.D. test does not shorten service life.

From the many different material and capacitor samples tested so far some acceptance/
rejection criteria can emerge. The ideal situation would be, of course, not to have any partial
discharges at the working voltage and up to it, on the act of ramping up. This is precisely
what the electric power industry aims for in its component testing and use. For D.C. parts
and assemblies for Space use this would result in some very large-sized, heavy, unwieldy parts.
The task then, is to judge from our experience, how much P.D. one can reliably get away
with, for D.C. service. To state such numerical criteria is, of course, risky business, and
the author reserves the right to modify these criteria as experience increases. The reader must
also understand that partial discharges precede catastrophic breakdown only if part of the
electrode to electrode path is interrupted by solid or liquid insulation. Purely gaseous breakdown between metallic electrodes is not preceded or heralded by small partial discharges.

Our acceptance/rejection criteria consist of several conditions-all must be full-filled for acceptance. These criteria were arrived at based mostly on 1000pf capacitor

samples and their performance.

- 1.) On the quiescent plateau of rated voltage there should be, after a 2 minute wait
 - 1.) No more than 1.5 pc/second average corona current, that is, no more than 150pc integrated pulse charge transfer in 100 seconds of observation time.
 - 2.) No more than 25pc in any single given pulse on the rated voltage plateau.
- II.) On the ramping to rated voltage, doing this in 40 seconds time (equivalent approximately to four 10 second quarterly ramps):
 - 3.) There should be no more than about 1500-2000pc total integrated pulse charge transfer for ceramics, and no more than about 1000pc for potting resins.
 - 4.) There should be no more than 100pc in any single pulse.
- III.) A sample of larger capacitance should be allowed to have a larger number of discharges, but not larger single pulses. Should this increase vary directly with capacitance C or with \sqrt{C} ? It is felt that items 1.) and 3.) should be allowed to increase with \sqrt{C} because much of the P.D. comes from the periphery of the electrodes rather than uniformly over the whole area.
- IV.) Any samples that show multiple corona bursts or that show discharges at preferred picocoulomb values or preferred peak distribution, should be rejected.
- V.) A test sample that has had previous high voltage on it should be ted twice, once at the same as previous polarity and then reversed. This is so that ferroelectric samples will not mistakenly be considered as discharge-free, when in fact the previous polarization is internally counteracting the externally applied field.
- VI.) The operator must have a good understanding of P.D. or corona measurements, both D.C. and A.C. and understand the difference; also the calibration procedure must be mastered and taken very seriously, since the quantitative measurement and criteria of D.C. partial discharge depends on correct calibration of the equipment at the start of each measurement.

REFERENCES

- [1] Densley, J., in Engineering Dielectrics, Vol. I, STP 669, ASTM 1979, p. 409.
- [2] Dakin, D. W., Proc. 8th Electrical NEMA-IEEE Insulation Conf., L.A., CA, Dec. 1968.
- [3] Bickford, K. J. and Sarjeant, W. J., 1981 Conf. on Electr. Insul. Dielectr. Phenom., IEEE '81, CH1668-3, p. 177.
- [4] Melville, D.R.G., Salvage, B., Steinberg, N. R.: Discharge Detection and Measurement under Direct Voltage Conditions: Significance of Discharge Magnitude; Proc. IEEE 112, 1965, pg. 1815.
- [5] Densley, R. J. and Sudershan, T. S., Partial discharge characteristics of Solid Insulation containing Spherical Cavities of Small Diameters. NRC Conf. on Electr. Insul. and Dielectr. Phenomena. Oct. 1976, Nat. Ac. of Sciences, Publ. 1977.
- [6] ASTM D 1868-81: Detection and Measurement of Discharge (Corona) Pulses in Eval. of Insulation Systems.
- [7] F. Kreuger, Discharge Detection in High Voltage Equipment, American Elsevier Publ., 1968.
- [8] Parker, Robt. D., Corona Testing of High Voltage Airborne Magnetics., Proc. of the 1975 Power Electronics Specialists Conf., IEEE 1975.
- [9] Corona Detection in Insulation Systems, Biddle Technical School Text, Blue Bell, Pa., Febr. 1970.
- [10] IEEE Std 454-1973: IEEE recommended practices for the Detection and Measurement of Partial Discharges during Dielectric Tests.
- [11] Hai, F. & Paschen, K. W., Development of a Partial Discharge Detection System for Traveling Wave Tube Testing, Aerospace Corp. for Air Force Systems Command, Rept. #SAMSO-TR-79-40, Sept. 28, 1979.
- [12] Bever, R. S. and Westrom, J. L.; IEEE Transact. on AES, Vol. AES-18, No. 1, Jan. 1982, pg. 82.

- [13] Bever, R.S., Seidenberg, B. and Westrom, J. L.; High Voltage Testing of Witness Samples for Faint Object Camera of the Space Telescope Project; NASA Goddard Space Flt. Ctr. X440-82-8; April 1982.
- [14] Manufacturing Technology for Airborne High Voltage Power Supplies; Vol. I, Febr. 1979; Dunbar, W. G. & Tjelle, P. A.; Boeing Aerospace Co.; Tech Rept. AFML-TR-79-4018, Vol. I, AFML; U.S. Airforce.
- [15] Howard, P. R., Proc. IEEE 98, part 2, 1951, pg. 365.
- [16] Stone, G. C.; IEEE Insulation Statistics Course, October 1983.
- [17] Wilkens, Engineering Dielectrics, Vol. II, STP 669, ASTM 1983.
- [18] Burnham, John; Recent Advances in Interpretation of Corona Test Results; Proc. IECEC Conf., Anaheim, Cal., Aug. 1982.
- [19] Exploratory Development of Space Qualified Potting Compounds; Tweedie, A. T. & Ismail Abdel-Latif, A.; G. E. Space Div., AFML, Contri. #F33615-82C-5007, U.S. Airforce.
- [20] Space Qualified Potting Compounds; Hudgins, W. P., Raplee, B. G.; Tirma, C. J.: TRW Co., AFSC, AFML Contr. #F33615-79-C-5098; U.S. Airforce.
- [21] Dunbar, W. G., High Voltage Power Supply Materials Evaluation, IEEE 1982 International Symposium on Electrical Insulation, June 1982, p. 46.
- [22] High Voltage Design Guide: Aircraft, Vol. IV, Jan. 1983; Dunbar, W. G., Boeing Aerospace Co., AFWAL-TR-82-2057, Vol. IV, AFWAL, U.S. Airforce.
- [23] High Voltage Design Guide: Spacecraft, Vol. V, Jan. 1983, Ibid.
- [24] Adams, A. T. & Mautz, J. R.; Computer Solution of Electrostatic Problems by Matrix Inversion; Proc. of National Electronics Conf., 25, 1969, pg. 198.
- [25] Dakin, T. W.: Partial discharges with D.C. and Transient High Voltages. Proc. Nat. Aerospace Electronics Conference, Dayton, Ohio, May 1978.

APPENDIX I.

Simple Models of Gas with in a Dielectric for D.C. and for A.C. Applied Voltage.

How does the "terminal corona-pulse voltage" or better, how does the apparent terminal charge-content of the pulse indicate what is really going on in an internal cavity? In other words, how do the relative sizes of cavity and dielectric thickness influence what magnitude of charge appears at the test sample terminals, corresponding to what goes on in the void? One can try to answer this by modeling the cavity.

A) At quiescient D.C. voltage:

Figure 3b shows the equivalent circuit of a corona-causing cavity in a slab of dielectric under D.C. conditions.

Here C_a , C_b and C_c represent the capacitances of the dielectric free from cavities, the dielectric in series with the cavity, and the cavity itself respectively. Similar subscript letters are used with the parallel resistances R_a , R_b and R_c .

At the true discharge inception voltage which is the lowest voltage at which discharges can occur in the void according to Paschen's curve, the time between successive discharges is extremely long, and so the discharge inception voltage is difficult to observe. As the applied voltage is increased to where one observes a few countable pulses per minute, the applied D.C. voltage V is already above the inception voltage V_i . The capitalized voltages V and V_i refer here to the externally applied voltages that correspond to the voltages v and v_i across the actual internal cavity and $V = nV_i$; $n = 1, 2, 3 \dots$

An analysis that is based on the above ideas predicts the following relationships for D.C. applied voltages [1, 25].

At the discharge inception voltage, the apparent discharge magnitude q is given by

$$q_{P,D.} = \left[C_a + \frac{C_b C_c}{C_b + C_c} \right] \cdot \frac{C_b}{C_a + C_b} \cdot \frac{R_c}{R_b + R_c} \cdot V_i$$
 (1)

Hence the energy W dissipated by the discharge is

$$W = \frac{1}{2} q V_i \frac{R_c}{R_b + R_c} \cdot \frac{C_b + C_c}{C_b} = \frac{1}{2} q V_i \gamma \qquad (2)$$

where

$$\gamma = \frac{R_c}{R_b + R_c} \cdot \frac{C_b + C_c}{C_b}$$

and is slightly larger than 1. Since one often works at $V = nV_i$, the energy dissipated per pulse can be written

$$W = \frac{1}{2}q \frac{V}{n} \gamma \tag{3}$$

but is still the same as at discharge inception voltage. The number of discharges occurring per unit time or the discharge repetition rate, f, is

$$f = -\varphi/\gamma \epsilon \epsilon_0$$
 Ln $(1 - \frac{1}{n})$; if $n > 1$, then $f \cong n\varphi/\gamma \epsilon \epsilon_0$ (4)

where φ is the conductivity, ϵ the relative permittivity or dielectric constant of insulating material and ϵ_0 the permittivity of free space.

Several insights can be gained from these equations:

- (a) To quantity $\varphi/\epsilon\epsilon_0$ is the cogent material property factor for D.C. partial discharge. It represents the inverse of the time constant for charge distribution in the dielectric material [3]. It to a large degree determines the frequency of P.D. pulses for the quiescent D. C. case of applied voltage, equation (4).
- (b) It is seen from equation (1) that the relative magnitudes of C_c , C_a , and especially C_b , which is the capacitance of the dielectric in series with the cavity, greatly influence the amount of apparent *charge content q* in a given pulse, that appears at the output terminals of the test sample. In other words, even if the test samples are

similar in their gross features and even if the circuit sensitivity is the same, then one should still expect different charge content of the output pulses depending on the relative size of the flaw and the thickness of the dielectric that it is buried in.

- directly with the conductivity of the insulating material. But the conduction process in high polymers is not a simple process: Conductivity decreases with time, exponentially, after application of voltage. Theoretically the conductivity in polymers is influenced by trapping of the few free charge carriers and of the injected electrons, at shallow and at deep traps. This is a time-dependent process. Also space-charge effects enter in as charge is injected into the polymer, and interface at the electrodes add to the complications. Thus immediately after application of D.C. voltage the discharge frequently drops off with time.
- (d) The prediction from equation (3), that there simply are more and more pulses as the voltage is raised, all of the same charge and energy content has not been found to be true, in general, in actual experiments on D.C. Partial Discharge conducted by the author: as D.C. voltage is increased the percentage of more energetic pulses also increases. This probably is due to the presence in a given test sample of many flaws and tiny voids. So perhaps, as voltage is increased, discharges are energized in more and more sites of imperfection, rather than all coming from one site at ever-increasing repetition rate.

(B) For A.C. applied voltage: [8]

Figure 3a is applicable under A.C. applied voltage conditions or upon the ramp from one voltage level to another. The division of applied voltage between void and intact dielectric is capacitative here rather than the resistive division of the D.C. case. In a pancake void with axis parallel to the electric field, the electric field within

the void is k times the field within the dielectric, where k is the dielectric constant $(\epsilon = k)$. The fringing fields and a possible field discontinuity are ignored here, and in the regions X, Y, Z in the Figure 3a the following is the case:

In the regions X and Z the capacitance per unit area is

$$C_a = k\epsilon_0/t \tag{5}$$

where t is the thickness.

In region Y, the capacitance of the void C_c and or the remaining material C_b , per unit area is

$$C_c = \epsilon_o/d \quad C_b = k\epsilon_o/(t - d)$$
 (6)

where d is the thickness of the void. The capacitance of the entire portion Y, per unit area

$$C_{Y} = \frac{k\epsilon_{0}}{t + d(k - 1)} \tag{7}$$

The electric fields in portion Y, for the capacitor plates maintained at voltage V, are, for the field within and without the void

$$E_{in} = k E_{out} E_{out} = V/(t + d(k - 1))$$
 (8)

The fields in part X and Z are V/t.

It is now possible to find the free charge distribution in the capacitor plates.

This will not be uniform: In the regions of no void, the charge per unit area is

$$Q = (k\epsilon_0/t) \cdot V$$
 (9)

In the section with the void the distribution is

$$Q = (k\epsilon_0/[t(1 + n(k - 1))]) \cdot V$$
 (10)

where n = d/t.

When the void discharges to an effective zero field in the void, then the change in the free charge observed in the capacitor plates is, per unit area

$$\Delta_{Q_f} = \frac{k\epsilon_0 V}{t} \left[1 - \frac{1}{1 + n(k-1)} \right] \tag{11}$$

The corresponding charge transfer within the void is then per unit area

$$Q = k\epsilon_0 V/(t - d)$$
 (12)

ちっぱんからうだっていり からま はいって 内臓を破れていていかいかい

It is useful now to make a calculation as to what order of magnitude of charge change to expect for a particular geometry.

Assume t = 3mm. Assume a discharge inception voltage, at atmospheric pressure, across a cylindrical void 2 mm in diameter and 1 mm deep, of 20,000 volts, V, applied field. This is not unreasonable, as seen from the several Paschen curves enclosed here. If one now substitues in equation (11), one obtains if one uses k = 4

$$\Delta_{Q_f} = \frac{4 \times 8.8 \times 10^{-12} \times 20,000}{0.003} [1 - \frac{1}{1 + \frac{1}{2} \times 3}] \times \frac{\Pi \ 10^{-6} \times 4}{4}$$

$$= 400 \text{pc}$$

This amounts to a change in free charge of about 400 picocoulombs. The result depends very sensitively on the relative void to dielectric size, of course. The result is of the order of magnitude of charge measured for the material samples with pillbox voids.

ORIGINAL PARE 15 OF POOR QUALITY

- .								
SPECIFIC		5	1.05 1.02 1.02 1.02		1.12 1.13 1.147 1.17 1.238	66. 76.		1.4
FUNGUS TY RESISTANCE Mon-			MON NOTR MON NOTR MON NOTR					MON NUTR
MATER PERPEABILI 9 hr-cm			1.0x10 ⁻⁷					
REVERSION RESISTANCE YES			25.5		8			
MOISTURE ABSORPTION		*	151 180 180 180		# ##			Ξ.
TRANSPARENCY COLOS		5	555555		\$ 99999 8 99999	55		9 7
NOLUNE COM COM			2.4x1013 1x1014 4.5x1013 1x105		4 20000	2011		2.0410 ¹² 3.4410 ¹³
(B.C.)			7,1016		Sx10 ¹⁵			7.0K1012
ELECTRIC STRENGTH V/Mil			2888		38833	82		9
			.001 100 mtz .0012 100 mtz .01 1 mzz .001 1 mzz		103 10 10. 103 001 500. 103 001 500.	193 001 1089. 193 001 1089.		301 210. set
			3.0 160 EM2 3.0 160 EM2 3.0 1 EM2 3.0 1 EM2		2.9 1 ML 5.0 1 ML 5.5 10 ML 1.1 100 ML .99 100 ML	3.0 100 mg 2.7 100 mg		3.5 :302
AAC NESISTANCE					2 X 2 X			3 3
HIES		1	izzzz		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88		EH-2523 COM
13.001		2	:338E			프트홈		ž.
;;	FLEXIBLE MATERIALS SILICORES	CHECKS CHECKS		FILLED	SILASTIC SILASTIC DOBY SEAL STICKED STICKED	. 33	CHALES FILLED	CORATIGNE
	ANC DIELECTRIC DISSIPATION STRENGTH VOLUME TRANSPARENCY NOISTURE REVERSION WATER FUNGUS TENDRERIES RESISTANCE CONSTANT V/MIL 0.1012 2.1012 2.1012 2.1012 3.1	AMC DIELECTRIC DISSIPATION STRENGTH FUNGUS RESISTANCE CONSTANT FACTOR V/NIL ON 12 1012 2 101	AMC DIELECTRIC DISSIPATION STRENGTH TRANSFARENCY NCISTURE REVERSION MATER FUNGUS TESISTANCE CONSTANT FACTOR V/NIL OWN COLDA ABSONPTION RESISTANCE PROPERABILITY RESISTANCE	Factor Factor Factor Factor Factor Factor Factor V/Mil COMM COLSA Macrometries Factor V/Mil COMM Factor V/Mil COMM Factor V/Mil COMM Factor V/Mil COMM Factor Factor V/Mil COMM Factor Factor Factor V/Mil COMM Factor Factor Factor Factor V/Mil COMM Factor Factor Factor Factor V/Mil COMM Factor V/Mil COMM Factor Factor	T PROPERTIES MESISTAMICE CONSIDERATION STRENGTH SURFACE WOLLING TRANSPARENCY NCISTURE REVERSION MATER FUNGUS FACTOR V/NIL CONT. COL. 34 ASCORPTION RESISTANCE PEDEMBLILITY PE	Fig. Fig.		

MATERIALS PROPERTIES LETERATURE

TABLE 2: MATERIALS PROPERTIES - ELECTRICAL (Con't.)

			ADC. RESTSTANCE	DIELECTRIC		DISIPATION D FACTOR	DIELECTRIC STRENGTH	RESISTIVITY SURFACE VO	YOLUME	TRANSPARENCY COLOR	MOISTURE	MATER PERMEABILITY	REVERSION RESISTANCE	FUNGUS RESISTANCE	SPECIFIC GRAVITY
SENI-FLEXISLE MATERIALS TAL URETMANES	ATERIALS TARE	LS TABLET PROPERTIES	∽	971				2101 <	2 101 ×			Mr-cm	2	MON MON	
STATE OF THE STATE	1527-M		194 Sec	2000 E E 9	8%	2 €	310		2.5x10 ¹¹	9 Ab - Bit			ži č	non mutr	8.3
EE	5 S	(2 E :	156 sec	4.6 B	3	. 06 1 PHZ	2 2 3	1,101,13	121012	Parties of the control of the contro	2.4		: <u>2</u> 1	non Autr	6.83
SOLUTION SOLUTIONS			160 sec	3.3 1 1962 2.55 1 1962	200	.016 1 PM2	200	e. 10	1.2×10 ¹ 3.8×10 ¹³	# PR PRES	,		2 2	non nutr	<u> </u>
Hue															
COMATMANE /	(II.)	93 TA	130 sec	3,7 1 7862		.016 1 ANZ	9	2.041013	1.2x1 ,14	OP - Tan	16 1.			non nutr	1.53
1 SOCKEDINE	3 ~	3		4.61 100 EM2	270. INI	.025 100 KH2	95		141013	5	101				1.15
POLTSALFIBES															
FILLED															
7405EA 7405EA	727 1201 9	258	***	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	03 1 PHZ .024 1 PKZ .014 1 PHZ	7 I	250	1,2410 ¹² 1,2410 ¹² 1,2410 ¹²	1.91.01.	00 - Lt Brn 00 - Red-Brn 00 - Brn				mon mult	
POL YOUTADIENES	ه.														
FILLED															
2 2 2 3	2.03	1 0		2.91 - 11 2.94 - 11	1 MHz.020 1 1 MHz.021 -	78.	\$	3.0641014 3.0641014	1.7821015 OF - B1t	0e - 81k					1.2
PHENDLIC - OIL															
FILLED															
uuu	15254 1529-35 1526-45	222 222 223					1260			C1 - Lt Brn OF - B1k OF - Tan	191			GINAL POOR	
							MATERIALS PROPERTIES LITERATURE	PROPERTIES TURE						(

TABLE 2: MATERIALS PROPERTIES - ELECTRICAL (Con't.)

(4)

TABLE 2: MATERIALS PROPERTIES - MECHANICAL

PLEXIBLE IMTERIALS TANGET PROPERTIES	TANGET PROPER!	1165	THE PHAL SHOCK RESISTANTE	SHRINKAGE V=VOLUME L=LINEAR	AGE Shri nyage	HARDNESS A-D = SHORE	IMPACT RESISTANCE	EL ONGATION	SERVICE TEMPERATURE -55 ^o c-+105 ^o c	HEAT DISTORTION TEMPERATURL	COEFFICIENT THEPHAL Expansion	THE 20MA COMUNCTIVITY
SILICONES UNFILLED SYLGAND	281	Ħ	Pass 10			\$		1001	2 ₀ 002+3 ₀ 597-			3,5x10 ⁻⁴ cal.cm
SYLGEND		8 8	Pass 10 MIL-1-16923	Ş	4417	, 25 2		100x 480x	-65°C+200°C		1.6x10-4/0F	3,5x10-4 1.3 BTU-in
ALL ALL STREET		ಕಚ	585°F +0 257°F	.60xV 1.21xv	1.11% .98%	35.55 55.55		150%	-90 ⁰ F+30C ⁰ F -80 ⁰ F+390 ⁰ F		1.8x10 ⁻⁴ / ⁰ f 1.54x10 ⁻⁴ / ⁰ f	1,07 BTU - 1n 1,23 BTU - in
FILES FILESTIC SILASTIC SILASTIC				#.		95K		325%	-67 ⁰ F+482 ⁰ F			
CHEM SEAL DC SYLCAND	3806 3116 170 84.062	22 Z Z	## 19523 \$553 MIL-1- \$553 MIL-1-	A # .		95 4 55 35 4 55 35 4 56		2251 1501 1503	-65 ⁰ C+250 ⁰ C		8x10 ⁻⁴ /oc	5.2x10 ⁻⁵ ca1-cm
GEIS DE DE									ა <mark>გვე-</mark> ა <mark>გივ</mark> (1% per 10°C 1% per 10°C	7x10 ⁻⁴ cal-cm
UNETWANES FILLED CONSTINANE	EN-7523	8 5	Pass 10- -65 to +190°C	1 265.		95-0		305 31	-55°C-+130°C		15x10 ⁻⁵ / ⁰ C	4.5x10 ⁻⁴ cal-cm

MATERIALS PROPERTIE! LITERATURE

ORIGINAL PAGE IS OF POOR QUILLEY

TABLE 2: MATERIALS PROPERTIES - MECHANICAL (Con't.)

				MODIFUS			STRENGTH		VT130731W
TARGET PROPERTIES	165		TENS11.5 500,000	FLEXURAL 450,000	FLEXURAL COMPRESSIVE 450,000 425,000	TENS 1.E	FLEXURAL	COMPRESSIVE	CPS
			psi	ısd	l Sd	psi	psi	psi	
FLEXIBLE MATERIALS									
SILICONES									
UNFILLED									
SYLGARD	182	28				006			2,500
SYLGARD	<u>8</u>	3 8				<u>8</u> , 6			2,500
RTV	209	35				3			00.
RTV TV	615	u				006			3,500
NIK ST	<u>*</u>	y							200
11111									
SILASTIC	E (93-072)	20				750			95,000
SILASIIC	- Se	2				300			
CHEM SEAL	3808	3 2				650			70,000
SYLGA-D	170	3 2				2/2 2/3			20,000
SYLGARD	95-082	22				220			1,500
GELS									
88	51 F-1-3523	88							600 CSTKS
URETHAMES									
FILLED									
COMATHANE	EN-2523	N 00				1600			2,800

MATERIALS PROPERTIES LITERATURE 十九年 人工

TABLE 2: MATERIALS PROPERTIES - MECHANICAL (Con't.)

the second secon

SEMI-FLEXIBLE MATFRIALS URETHANES IMPELIED	RIALS TARGET PROPERTIES	SI.	THERMAL SHOCK RESISTANCE	SHRINKAGE V=VOLUME L=LINEAR	AGE Shrimkage	HARDNESS SHORE	IMPACT RESISTANCE	EL DMGATION	SERVICE TEMPERATURE -55°C to +105°C	HEAT DISTORTION TEMPERATURE	COEFFICIENT THERMAL EXPANSION	ThERMAL CONC.2CTEVITY
28 28 28 28 28 28 28 28 28 28 28 28 28 2	1527-H 1546 1578 1578 1592	25 25 25 W	10.2.66.00	2.5xV	į	88		563x 100x 600x 425x	- 70 ⁰ F +300 ⁰ F - 65 ⁰ F +300 ⁰ F - 320 ⁰ F		1.0x10-4.0f	1.025 BTU-1n
CONATIONE SOLITIVANE	EN-2522 113	. 5 E	104 - 63 F +2650F +130°C	1.778 .912L 4.78	1816	60 - A 60 - A	23.4 ft-in ML-1-16923 107 ft-in	651 80% 100%	266 ⁰ F - 55 ⁰ C-+190 ⁰ C		1.17x10 ⁻⁴ /° _F 21x10 ⁻⁵ /° _C 5.4x10 ⁻⁵ /° _F	1.22 BTU-in 2.6×10 ⁻⁴ Cal-cm
CONATHANE SCLITAME/CABOSIL ISOCHEMBEZ POLYSU.FIDES FILLED	EN-2521 113 468	00 HT 00 OS I	PASS 10 ~ -65 + 130°C	712F		72 - 0 60 - A 74 - 0		40%	-55-+130 ⁰ C -40 ⁰ F-+200 ⁰ C		16.10 ⁻⁵ / ⁰ C 7.1x10 ⁻⁵ / ⁰ C	6.5x10 ⁻⁴ Cal-cm 6.3x10 ⁻⁴ Cal-cm
PROSEAL PR GC GC POLYBUTADIENES FILLED	727 1201 1300	25.00 00 00 00 00 00		12xv 12xv		50 - A 40 - A 45 - A			-70 ⁰ F -+225 ⁰ F -70°F		O F F	ORIG
CB POLY bd PILLED C 01L C 0	1109 2-011 1525A 1525F 35 1525G-45	ARCO VIK VIK	-72 ⁹ C FLEX	.0218 .2x .153 .153		45 - A 30 - A ₂		1 803 28 53	-85 ⁰ F + 400 ⁰ F -85 ⁰ F + 400 ⁰ F		°0 0€ € 1 ± 1 ± 1	iste i magazina di senti di s

MATERIALS PROPERTIES LITERATURE こうかん かいけんけんしょう ハイス・ション・ストル かいかん あんしゅうしゅう 大変な 大変な 大変な 大変な 大変な かんしゅうしょう かんしょう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう しゅうしゅう
		cps	19,500 15,000 37,000 20,000	4.000 4.000	,000 ,000	8		50,000 55,000 55,000	•	8,400			3,500 12,000 12,000
	JAISSJABARUJ	150	<u> </u>		343								
	STRENGTH FLEXURAL	isq											
Con't.)	TENSILE	psí	2,360 1,000 5,000 6,000	8	1,600					1,260			
CHANICAL (COMPRESSIVE	425,000 ps1											
TES - ME	MODULUS Flexural	450,000 ps i											
MATERIALS PROPERTIES - MECHANICAL (Con't.)	TENSILE	500,000 ps ⁱ	500 (100%) 600 (100%)							365 (1001)			
2: MATER			PRC PRC PRC 319 50M	Ξ	CON THI 150			PRC		DOL ARCO			AAA
TABLE		ITALS Target properties	1527-4 1546 1578 1578 1592 221 EN-252	E11	EN-2523 113 468			727 1201 Q 1300		1109			1525A 1525F-35 1525G-45
		E MATER	UNFILLED PR PR PR PR PR PR PR CONGINGNE	FILLED	CONATHANE SOL ITHANE/CAROS IL ISOCHEMREZ	POLYSULFIDES	FILLED	PROSEAL PR GC	POLYBUTADIENES PILLED	29 20 20 20 20 20 20 20 20 20 20 20 20 20	PHENOLIC - 01L	FILLED	రంల

MATERIALS PROPERTIES LITERATURE

1上人族者ではいて

RIGID PATERIALS TARGET P EPOXIES	TERIALS Target properties		THEIRMAL SHOCK RESISTANCE	SHRINKAGE V = VOLUME L - LIMBAR	AGE SHRINKAGE	HARDMESS A-D = SHORE	IMPACT E RESISTANCE	NOTATION .	SERVICE TEMPERATURE -55 ⁰ C to +105 ⁰ C	HEAT DISTORTION TEMPERATURE	COEFFICIENT OF THERMAL EXPANSION	DF THERMAL CONDUCTIVITY
UNFILLED SCOTCHCAST SCOTCHCAST ISOCHEREZ SCOTCHCAST STYCAST ISOCHEREZ COMADONY ROCEDBAK ROCEDBAK	1200-1 2100-1 591(1-4) 10-2 40-2 10-2 10-2 10-2 10-2 10-2 10-2 10-2 1	## 25 # 15 # # # 75 0 15 0 # 15 # #	Fail Pass MIL-1-16923 .881, 10 -45°F+1604 .501, 7 10 -45°F+1604 .5	3621 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 15 ·	35 Barcol 70 D 88 D 65 D 66-D 80-D 61-D	60 in-16	1.41 503 853 71 753	3 ₀ 811 3 ₀ 061+01 3 ₀ 581 3 ₀ 581 3 ₀ 661 3 ₀ 582 + 3 ₀ 58-	192°C	177x10 ⁻¹⁰ / °C 15x10-5/°C 6.2x10-5/°C 21x10-5/°C 5.9x10-5/°C 6.2x10-5/°C	4.4x10 ⁻⁴ Ca1-cm 4.2x10 ⁻⁴ Ca1-cm 4.8x10 ⁻⁴ Ca1-cm 5.3x10 ⁻⁴ Ca1-cm 4.5x10 ⁻⁴ Ca1-cm
PR PR PR PR 150CHENGS 150C	281 2200 2200 2200 40245 40245 40595 1090 1095 1095 1095 1005 1005 1005	# # # # # # # # # # # # # # # # # # #	Pass MIL-I-16923 5 H11/in 492L Pass PTL-I-16923 3.12 V Pass 10 MIL-1 2.81 V Pass 55°C 15°C Pass -55°C 15°C	5 H1/inch ² 492L 492L 492L 493L 583 V 2.83 V 1.72 V 1.72 V 2.13 Vol 6.00	0% 0% 0% 0% 0% 83 83 83 83 83 83 83 83 83 83 84 85 86 86 87 87 88 88 88 88 88 88 88 88 88 88 88	65 0 75-6 88-0 88-0 70-0 76-0 76-0 94-0 120 Rock-M 57 Shore 0 87 87 88 87 60	.2 ft lb/in 1200 .3 ft lb/in 1200 .45 ft-lb/in 1200 12 ft-lb	45 x	-55 ^O C+170 ^O C -35 ^O C+150 ^O C -45 ^O C+280 ^O F -65 ^O F+280 ^O F -65 ^O F+350 ^O F 300 ^O F 265 ^O F 300 ^O F	ე _ტ ბი ე _ტ გაც ე _ტ გაც ე _ტ გაც	15x10 ⁻⁵ /9¢ 2.7x10 ⁵ /9¢ 5.3x10 ⁻⁵ /9¢ 5.1x10 ⁻⁵ /9¢ 2.3x10 ⁻⁵ /9¢ 2.2x10 ⁻⁵ /9¢ 1.0x10 ⁻⁵ /9¢ 2.3x10 ⁻⁵ /9¢ 2.3x10 ⁻⁵ /9¢ 2.3x10 ⁻⁵ /9¢ 2.8x10 ⁻⁵ /9¢	12x10 ⁻⁴ (cal-cm 3.4 81U-1n 7.8 81U-1n 8.2 81U-1n 7. 4x10 ⁻⁴ cal-cm 7. 81U-1n 7. 81U-1n 7. 81U-1n 7. 81U-1n 7. 81U-1n 3.3 81U-1n 3.3 81U-1n 5.5 81U-1n 5.7 81U-1n 5.7 81U-1n 5.7 81U-1n 7. 31x10 ⁻⁴ (cal-cm
POLYESTER UNFILLED STYPOL STYPOL	40-1021 40-1124 40-1037	7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2		.8 .4 .4 .4	40 70	₹*		250X				
FILLED STYPOL STYPOL STYPOL URETHANES UNFILLED CONATHANE	40-1602 40-1603 EN-2526	33 80 80		7.2% 6.7% 6.7%	00 60 80	<u> </u>		2 01	-55°C + 105°C -55°C + 105°C -20°C+130°C		21x10 ⁻⁵ /9c	2.8 x 10 ⁻⁴ a1-cm

MATERIALS PROPERTIES LITERATURE

O_OEXX ~JOO_ U&&&>>	<u>=</u>	TABLE 2: MATERIALS PROPERTIES - MECHANICAL (Con't.)	TENSILE TEXURAL COMPRESSIVE TENSILE FLEXURAL COMPRESSIVE VISCOSITY	1ES 500,000 450,000 425,000 700 psi psi cps	3H 6200 19,000 23,800 3000 3M 2000 1,400 3,000 5500 150 9200 425 2,400 400 EC 425 2,400 400 400 150 4800 6,800 550 160 7000 6,800 650 160 500 650 1400 160 500 650 1500	FRI 1,250 1,250 1,500 48,000 2,000 1,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 1,500		FRE 1800 620 35,000
	보고 보고 교육을 보고 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	7.EXURAL 450,000 ps i	450,000 psi			x 10 ⁶ x 10 ⁵ 55 x 10 ⁵		
CAST 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			RIGID M	EPOXIES T UNFILLED	SCOTCHCAST SCOTCHCAST SCOTCHCAST SCOTCHCAST STYCAST COMMPOXY NORDBAK NORDBAK	FILLED SCOTCHCAST PR 1SO-WEREZ 1SOCHEREZ 1SOCH	POLYESTER UNFILLED STYPOL STYPOL STYPOL FILLED	STYPOL STYPOL STYPOL UNETLED CONATHANE

The second second

MATERIALS PROPERTIES LITERATURE